Partial Differential Equations Solution Manual
© Leon van Dommelen
Skip to:
Contents
SOLUTION MANUAL
Partial Differential Equations
Leon van Dommelen
Contents
1
. Introduction
1
.
1
Basic Concepts
1
.
1
.
1
The prevalence of partial differential equations
1
.
1
.
2
Definitions
1
.
1
.
3
Typical boundary conditions
1
.
2
The Standard Examples
1
.
2
.
1
The Laplace equation
1
.
2
.
1
.
1
Solution stanexl-a
1
.
2
.
1
.
2
Solution stanexl-b
1
.
2
.
1
.
3
Solution stanexl-b1
1
.
2
.
1
.
4
Solution stanexl-b2
1
.
2
.
1
.
5
Solution stanexl-b3
1
.
2
.
1
.
6
Solution stanexl-b5
1
.
2
.
1
.
7
Solution stanexl-c
1
.
2
.
1
.
8
Solution stanexl-d
1
.
2
.
1
.
9
Solution stanexl-e
1
.
2
.
2
The heat equation
1
.
2
.
2
.
1
Solution stanexh-a
1
.
2
.
2
.
2
Solution stanexh-b
1
.
2
.
3
The wave equation
1
.
2
.
3
.
1
Solution stanexw-a
1
.
2
.
3
.
2
Solution stanexw-b
1
.
2
.
3
.
3
Solution stanexw-c
1
.
2
.
3
.
4
Solution stanexw-e
1
.
2
.
3
.
5
Solution stanexw-f
1
.
3
Classification
1
.
3
.
1
Introduction
1
.
3
.
2
Scalar second order equations
1
.
3
.
2
.
1
Solution clasnd-a
1
.
4
Changes of Coordinates
1
.
4
.
1
Introduction
1
.
4
.
2
The formulae for coordinate transformations
1
.
4
.
3
Rotation of coordinates
1
.
4
.
3
.
1
Solution rotcoor-a
1
.
4
.
4
Explanation of the classification
1
.
4
.
4
.
1
Solution expclass-a
1
.
5
Two-Dimensional Coordinate Transforms
1
.
5
.
1
Characteristic Coordinates
1
.
5
.
2
Parabolic equations in two dimensions
1
.
5
.
3
Elliptic equations in two dimensions
1
.
5
.
3
.
1
Solution 2dcanel-a
1
.
6
Properly Posedness
1
.
6
.
1
The conditions for properly posedness
1
.
6
.
1
.
1
Solution ppc-a
1
.
6
.
1
.
2
Solution ppc-b
1
.
6
.
1
.
3
Solution ppc-c
1
.
6
.
2
An improperly posed parabolic problem
1
.
6
.
3
An improperly posed elliptic problem
1
.
6
.
3
.
1
Solution ppe-a
1
.
6
.
3
.
2
Solution ppe-b
1
.
6
.
3
.
3
Solution ppe-c
1
.
6
.
3
.
4
Solution ppe-d
1
.
6
.
3
.
5
Solution ppe-e
1
.
6
.
3
.
6
Solution ppe-f
1
.
6
.
4
Improperly posed hyperbolic problems
1
.
6
.
4
.
1
Solution pph-a
1
.
6
.
4
.
2
Solution pph-b
1
.
7
Energy methods
1
.
7
.
1
The Poisson equation
1
.
7
.
1
.
1
Solution emp-a
1
.
7
.
1
.
2
Solution emp-b
1
.
7
.
2
The heat equation
1
.
7
.
3
The wave equation
1
.
8
Variational methods [None]
2
. Green’s Functions
2
.
1
Introduction
2
.
1
.
1
The one-dimensional Poisson equation
2
.
1
.
1
.
1
Solution gf1d-a
2
.
1
.
1
.
2
Solution gf1d-b
2
.
1
.
2
More on delta and Green’s functions
2
.
2
The Poisson equation in infinite space
2
.
2
.
1
Overview
2
.
2
.
2
Loose derivation
2
.
2
.
2
.
1
Solution pninfl-a
2
.
2
.
3
Rigorous derivation
2
.
3
The Poisson or Laplace equation in a finite region
2
.
3
.
1
Overview
2
.
3
.
2
Intro to the solution procedure
2
.
3
.
3
Derivation of the integral solution
2
.
3
.
3
.
1
Solution pnfd-a
2
.
3
.
4
Boundary integral (panel) methods
2
.
3
.
5
Poisson’s integral formulae
2
.
3
.
6
Derivation
2
.
3
.
6
.
1
Solution pnifd-a
2
.
3
.
6
.
2
Solution pnifd-b
2
.
3
.
7
The integral formula for the Neumann problem
2
.
3
.
8
Smoothness of the solution
3
. First Order Equations
3
.
1
Classification and characteristics
3
.
2
Numerical solution
3
.
3
Analytical solution
3
.
4
Application of the boundary or initial condition
3
.
5
The inviscid Burgers’ equation
3
.
5
.
1
Wave steepening
3
.
5
.
2
Shocks
3
.
5
.
3
Conservation laws
3
.
5
.
4
Shock relation
3
.
5
.
5
The entropy condition
3
.
6
First order equations in more dimensions
3
.
7
Systems of First Order Equations (None)
4
. D'Alembert Solution of the Wave equation
4
.
1
Introduction
4
.
2
Extension to finite regions
4
.
2
.
1
The physical problem
4
.
2
.
2
The mathematical problem
4
.
2
.
3
Dealing with the boundary conditions
4
.
2
.
4
The final solution
5
. Separation of Variables
5
.
1
A simple example
5
.
1
.
1
The physical problem
5
.
1
.
2
The mathematical problem
5
.
1
.
3
Outline of the procedure
5
.
1
.
4
Step 1: Find the eigenfunctions
5
.
1
.
5
Should we solve the other equation?
5
.
1
.
6
Step 2: Solve the problem
5
.
2
Comparison with D'Alembert
5
.
3
Understanding the Procedure
5
.
3
.
1
An ordinary differential equation as a model
5
.
3
.
2
Vectors versus functions
5
.
3
.
3
The inner product
5
.
3
.
4
Matrices versus operators
5
.
3
.
5
Some limitations
5
.
4
An Example with Periodic Boundary Conditions
5
.
4
.
1
The physical problem
5
.
4
.
2
The mathematical problem
5
.
4
.
3
Outline of the procedure
5
.
4
.
4
Step 1: Find the eigenfunctions
5
.
4
.
5
Step 2: Solve the problem
5
.
4
.
6
Summary of the solution
5
.
5
Finding the Green's function
5
.
6
Inhomogeneous boundary conditions
5
.
6
.
1
The physical problem
5
.
6
.
2
The mathematical problem
5
.
6
.
3
Outline of the procedure
5
.
6
.
4
Step 0: Fix the boundary conditions
5
.
6
.
5
Step 1: Find the eigenfunctions
5
.
6
.
6
Step 2: Solve the problem
5
.
6
.
7
Summary of the solution
5
.
7
Finding the Green's functions
5
.
8
An alternate procedure
5
.
8
.
1
The physical problem
5
.
8
.
2
The mathematical problem
5
.
8
.
3
Step 0: Fix the boundary conditions
5
.
8
.
4
Step 1: Find the eigenfunctions
5
.
8
.
5
Step 2: Solve the problem
5
.
8
.
6
Summary of the solution
5
.
9
A Summary of Separation of Variables
5
.
9
.
1
The form of the solution
5
.
9
.
2
Limitations of the method
5
.
9
.
3
The procedure
5
.
9
.
4
More general eigenvalue problems
5
.
10
More general eigenfunctions
5
.
10
.
1
The physical problem
5
.
10
.
2
The mathematical problem
5
.
10
.
3
Step 0: Fix the boundary conditions
5
.
10
.
4
Step 1: Find the eigenfunctions
5
.
10
.
5
Step 2: Solve the problem
5
.
10
.
6
Summary of the solution
5
.
10
.
7
An alternative procedure
5
.
11
A Problem in Three Independent Variables
5
.
11
.
1
The physical problem
5
.
11
.
2
The mathematical problem
5
.
11
.
3
Step 1: Find the eigenfunctions
5
.
11
.
4
Step 2: Solve the problem
5
.
11
.
5
Summary of the solution
6
. Fourier Transforms [None]
7
. Laplace Transforms
7
.
1
Overview of the Procedure
7
.
1
.
1
Typical procedure
7
.
1
.
2
About the coordinate to be transformed
7
.
2
A parabolic example
7
.
2
.
1
The physical problem
7
.
2
.
2
The mathematical problem
7
.
2
.
3
Transform the problem
7
.
2
.
4
Solve the transformed problem
7
.
2
.
5
Transform back
7
.
3
A hyperbolic example
7
.
3
.
1
The physical problem
7
.
3
.
2
The mathematical problem
7
.
3
.
3
Transform the problem
7
.
3
.
4
Solve the transformed problem
7
.
3
.
5
Transform back
7
.
3
.
6
An alternate procedure
Bibliography
To:
Contents
FAMU-FSU College of Engineering
Processed by LaTeX2HTML-FU