Partial Differential Equations Solution Manual
© Leon van Dommelen
Skip to:
1. Introduction
Contents
1. Introduction
1.1 Basic Concepts
1.1.1 The prevalence of partial differential equations
1.1.2 Definitions
1.1.3 Typical boundary conditions
1.2 The Standard Examples
1.2.1 The Laplace equation
1.2.1.1 Solution stanexl-a
1.2.1.2 Solution stanexl-b
1.2.1.3 Solution stanexl-b1
1.2.1.4 Solution stanexl-b2
1.2.1.5 Solution stanexl-b3
1.2.1.6 Solution stanexl-b5
1.2.1.7 Solution stanexl-c
1.2.1.8 Solution stanexl-d
1.2.1.9 Solution stanexl-e
1.2.2 The heat equation
1.2.2.1 Solution stanexh-a
1.2.2.2 Solution stanexh-b
1.2.3 The wave equation
1.2.3.1 Solution stanexw-a
1.2.3.2 Solution stanexw-b
1.2.3.3 Solution stanexw-c
1.2.3.4 Solution stanexw-e
1.2.3.5 Solution stanexw-f
1.3 Classification
1.3.1 Introduction
1.3.2 Scalar second order equations
1.3.2.1 Solution clasnd-a
1.4 Changes of Coordinates
1.4.1 Introduction
1.4.2 The formulae for coordinate transformations
1.4.3 Rotation of coordinates
1.4.3.1 Solution rotcoor-a
1.4.4 Explanation of the classification
1.4.4.1 Solution expclass-a
1.5 Two-Dimensional Coordinate Transforms
1.5.1 Characteristic Coordinates
1.5.2 Parabolic equations in two dimensions
1.5.3 Elliptic equations in two dimensions
1.5.3.1 Solution 2dcanel-a
1.6 Properly Posedness
1.6.1 The conditions for properly posedness
1.6.1.1 Solution ppc-a
1.6.1.2 Solution ppc-b
1.6.1.3 Solution ppc-c
1.6.2 An improperly posed parabolic problem
1.6.3 An improperly posed elliptic problem
1.6.3.1 Solution ppe-a
1.6.3.2 Solution ppe-b
1.6.3.3 Solution ppe-c
1.6.3.4 Solution ppe-d
1.6.3.5 Solution ppe-e
1.6.3.6 Solution ppe-f
1.6.4 Improperly posed hyperbolic problems
1.6.4.1 Solution pph-a
1.6.4.2 Solution pph-b
1.7 Energy methods
1.7.1 The Poisson equation
1.7.1.1 Solution emp-a
1.7.1.2 Solution emp-b
1.7.2 The heat equation
1.7.3 The wave equation
1.8 Variational methods [None]
2. Green’s Functions
2.1 Introduction
2.1.1 The one-dimensional Poisson equation
2.1.1.1 Solution gf1d-a
2.1.1.2 Solution gf1d-b
2.1.2 More on delta and Green’s functions
2.2 The Poisson equation in infinite space
2.2.1 Overview
2.2.2 Loose derivation
2.2.2.1 Solution pninfl-a
2.2.3 Rigorous derivation
2.3 The Poisson or Laplace equation in a finite region
2.3.1 Overview
2.3.2 Intro to the solution procedure
2.3.3 Derivation of the integral solution
2.3.3.1 Solution pnfd-a
2.3.4 Boundary integral (panel) methods
2.3.5 Poisson’s integral formulae
2.3.6 Derivation
2.3.6.1 Solution pnifd-a
2.3.6.2 Solution pnifd-b
2.3.7 The integral formula for the Neumann problem
2.3.8 Smoothness of the solution
3. First Order Equations
3.1 Classification and characteristics
3.2 Numerical solution
3.3 Analytical solution
3.4 Application of the boundary or initial condition
3.5 The inviscid Burgers’ equation
3.5.1 Wave steepening
3.5.2 Shocks
3.5.3 Conservation laws
3.5.4 Shock relation
3.5.5 The entropy condition
3.6 First order equations in more dimensions
3.7 Systems of First Order Equations (None)
4. D'Alembert Solution of the Wave equation
4.1 Introduction
4.2 Extension to finite regions
4.2.1 The physical problem
4.2.2 The mathematical problem
4.2.3 Dealing with the boundary conditions
4.2.4 The final solution
5. Separation of Variables
5.1 A simple example
5.1.1 The physical problem
5.1.2 The mathematical problem
5.1.3 Outline of the procedure
5.1.4 Step 1: Find the eigenfunctions
5.1.5 Should we solve the other equation?
5.1.6 Step 2: Solve the problem
5.2 Comparison with D'Alembert
5.3 Understanding the Procedure
5.3.1 An ordinary differential equation as a model
5.3.2 Vectors versus functions
5.3.3 The inner product
5.3.4 Matrices versus operators
5.3.5 Some limitations
5.4 An Example with Periodic Boundary Conditions
5.4.1 The physical problem
5.4.2 The mathematical problem
5.4.3 Outline of the procedure
5.4.4 Step 1: Find the eigenfunctions
5.4.5 Step 2: Solve the problem
5.4.6 Summary of the solution
5.5 Finding the Green's function
5.6 Inhomogeneous boundary conditions
5.6.1 The physical problem
5.6.2 The mathematical problem
5.6.3 Outline of the procedure
5.6.4 Step 0: Fix the boundary conditions
5.6.5 Step 1: Find the eigenfunctions
5.6.6 Step 2: Solve the problem
5.6.7 Summary of the solution
5.7 Finding the Green's functions
5.8 An alternate procedure
5.8.1 The physical problem
5.8.2 The mathematical problem
5.8.3 Step 0: Fix the boundary conditions
5.8.4 Step 1: Find the eigenfunctions
5.8.5 Step 2: Solve the problem
5.8.6 Summary of the solution
5.9 A Summary of Separation of Variables
5.9.1 The form of the solution
5.9.2 Limitations of the method
5.9.3 The procedure
5.9.4 More general eigenvalue problems
5.10 More general eigenfunctions
5.10.1 The physical problem
5.10.2 The mathematical problem
5.10.3 Step 0: Fix the boundary conditions
5.10.4 Step 1: Find the eigenfunctions
5.10.5 Step 2: Solve the problem
5.10.6 Summary of the solution
5.10.7 An alternative procedure
5.11 A Problem in Three Independent Variables
5.11.1 The physical problem
5.11.2 The mathematical problem
5.11.3 Step 1: Find the eigenfunctions
5.11.4 Step 2: Solve the problem
5.11.5 Summary of the solution
6. Fourier Transforms [None]
7. Laplace Transforms
7.1 Overview of the Procedure
7.1.1 Typical procedure
7.1.2 About the coordinate to be transformed
7.2 A parabolic example
7.2.1 The physical problem
7.2.2 The mathematical problem
7.2.3 Transform the problem
7.2.4 Solve the transformed problem
7.2.5 Transform back
7.3 A hyperbolic example
7.3.1 The physical problem
7.3.2 The mathematical problem
7.3.3 Transform the problem
7.3.4 Solve the transformed problem
7.3.5 Transform back
7.3.6 An alternate procedure
Bibliography
To:
1. Introduction
FAMU-FSU College of Engineering
Processed by LaTeX2HTML-FU