D.24 Hy­dro­gen mol­e­cule ground state and spin

The pur­pose of this note is to ver­ify that the in­clu­sion of spin does not change the spa­tial form of the ground state of the hy­dro­gen mol­e­cule. The low­est ex­pec­ta­tion en­ergy $\langle{E}\rangle$ $\vphantom0\raisebox{1.5pt}{$=$}$ $\langle\psi_{\rm {gs}}\vert H\psi_{\rm {gs}}\rangle$, char­ac­ter­iz­ing the cor­rect ground state, only oc­curs if all spa­tial com­po­nents $\psi_{\pm\pm}$ of the ground state with spin,

\begin{displaymath}
\psi_{\rm gs} =
\psi_{++} {\uparrow}{\uparrow}+ \psi_{+-} ...
...+} {\downarrow}{\uparrow}+ \psi_{-} {\downarrow}{\downarrow},
\end{displaymath}

are pro­por­tional to the no-spin spa­tial ground state $\psi_{{\rm {gs}},0}$.

The rea­son is that the as­sumed Hamil­ton­ian (5.3) does not in­volve spin at all, only spa­tial co­or­di­nates, so, for ex­am­ple,

\begin{displaymath}
\left(H\psi_{++}{\uparrow}{\uparrow}\right)
\equiv
H\left...
...S_{z2})\right)
=
\left(H\psi_{++}\right){\uparrow}{\uparrow}
\end{displaymath}

and the same for the other three terms in $H\psi_{\rm {gs}}$. So the ex­pec­ta­tion value of en­ergy be­comes

\begin{displaymath}
\begin{array}{l}
\left\langle{E}\right\rangle = \langle
\...
...(H\psi_{-}\right){\downarrow}{\downarrow} \rangle
\end{array}\end{displaymath}

Be­cause of the or­tho­nor­mal­ity of the spin states, this mul­ti­plies out into in­ner prod­ucts of match­ing spin states as

\begin{displaymath}
\left\langle{E}\right\rangle =
\langle\psi_{++}\vert H\psi...
... H\psi_{-+}\rangle +
\langle\psi_{-}\vert H\psi_{-}\rangle.
\end{displaymath}

In ad­di­tion, the wave func­tion must be nor­mal­ized, $\langle\psi_{\rm {gs}}\vert\psi_{\rm {gs}}\rangle$ $\vphantom0\raisebox{1.5pt}{$=$}$ 1, or

\begin{displaymath}
\langle\psi_{++}\vert\psi_{++}\rangle +
\langle\psi_{+-}\v...
...\psi_{-+}\rangle +
\langle\psi_{-}\vert\psi_{-}\rangle = 1.
\end{displaymath}

Now when $\psi_{++}$, $\psi_{+-}$, $\psi_{-+}$, and $\psi_{-}$ are each pro­por­tional to the no-spin spa­tial ground state $\psi_{{\rm {gs}},0}$ with the low­est en­ergy $E_{\rm {gs}}$, their in­di­vid­ual con­tri­bu­tions to the en­ergy will be given by $\left\langle\vphantom{H\psi_{\pm\pm}}\psi_{\pm\pm}\hspace{-\nulldelimiterspace}...
...e{.03em}\right.\!\left\vert\vphantom{\psi_{\pm\pm}}H\psi_{\pm\pm}\right\rangle $ $\vphantom0\raisebox{1.5pt}{$=$}$ $E_{\rm {gs}}\left\langle\vphantom{\psi_{\pm\pm}}\psi_{\pm\pm}\hspace{-\nulldeli...
...ce{.03em}\right.\!\left\vert\vphantom{\psi_{\pm\pm}}\psi_{\pm\pm}\right\rangle $, the low­est pos­si­ble. Then the to­tal en­ergy $\left\langle{E}\right\rangle $ will be $E_{\rm {gs}}$. Any­thing else will have more en­ergy and can there­fore not be the ground state.

It should be pointed out that to a more ac­cu­rate ap­prox­i­ma­tion, spin causes the elec­trons to be some­what mag­netic, and that pro­duces a slight de­pen­dence of the en­ergy on spin; com­pare ad­den­dum {A.39}. This note ig­nored that, as do most other de­riva­tions in this book.