Subsections


7.3 A hyperbolic example

This example illustrates Laplace transform solution for a hyperbolic partial differential equation.

It also illustrates that the transformed coordinate is not always a time.


7.3.1 The physical problem

Find the horizontal perturbation velocity in a supersonic flow above a membrane overlaying a compressible variable medium.

Figure 7.3: Supersonic flow over a membrane.
\begin{figure}
\begin{center}
\leavevmode
{}
\epsffile{laphex1.eps}
\end{center}
\end{figure}


7.3.2 The mathematical problem

Figure 7.4: Supersonic flow over a membrane.
\begin{figure}
\begin{center}
\leavevmode
{}
\epsffile{laphex2.eps}
\end{center}
\end{figure}

Try a Laplace transform. The physics and the fact that Laplace transforms like only initial conditions suggest that $x$ is the one to be transformed. Variable $x$ is our ``time-like'' coordinate.


7.3.3 Transform the problem

Transform the partial differential equation:

\begin{displaymath}
u_{xx} = a^2 u_{yy}
\quad \stackrel{\hbox{Table 6.3, \ch...
...- \overline{\smash{u_x(0,y)}\vphantom{.}}
= a^2 \hat u_{yy}
\end{displaymath}

Transform the boundary condition:

\begin{displaymath}
u_y - p u = f(x)
\quad
\Relbar\joinrel\Relbar\joinre...
...nrel\Longrightarrow
\quad
\hat u_y - p \hat u = \hat f(s)
\end{displaymath}


7.3.4 Solve the transformed problem

Solve the partial differential equation, again effectively a constant coefficient ordinary differential equation:

\begin{displaymath}
s^2 \hat u = a^2 \hat u_{yy}
\end{displaymath}


\begin{displaymath}
s^2 = a^2 k^2 \quad\quad\Rightarrow\quad\quad k = \pm s/a
\end{displaymath}


\begin{displaymath}
\hat u = A e^{sy/a} + B e^{-sy/a}
\end{displaymath}

Apply the boundary condition at $y=\infty$:

\begin{displaymath}
A = 0
\end{displaymath}

Apply the boundary condition at $y=0$:

\begin{displaymath}
\hat u_y - p \hat u = \hat f \quad\quad\Rightarrow\quad\quad
- \frac sa B - p B = \hat f
\end{displaymath}

Solving for $B$ and plugging it into the expression for $\hat u$ gives:

\begin{displaymath}
\hat u = - \frac{a\hat f}{s+ap} e^{-sy/a}
\end{displaymath}


7.3.5 Transform back

We need to find the original to

\begin{displaymath}
\hat u = - \frac{a}{s+ap} \hat f e^{-sy/a}
\end{displaymath}

Looking in the tables:

\begin{displaymath}
\frac{1}{s+ap}
\quad \stackrel{\hbox{Table 6.4, \char93 ...
...\joinrel
\Relbar\joinrel\Longrightarrow}
\quad
e^{-apx}
\end{displaymath}

The other factor is a shifted function $f$, restricted to the interval that its argument is positive:

\begin{displaymath}
e^{-sy/a} \hat f
\quad \stackrel{\hbox{Table 6.3, \char9...
...\Longrightarrow}
\quad
\bar f\left(x - \frac{y}{a}\right)
\end{displaymath}

With the bar, I indicate that I only want the part of the function for which the argument is positive. This could be written instead as

\begin{displaymath}
f\left(x - \frac{y}{a}\right) H \left(x - \frac{y}{a}\right)
\end{displaymath}

where the Heaviside step function $H(x)=0$ if $x$ is negative and 1 if it is positive.

Figure 7.5: Function $\bar f$.
\begin{figure}
\begin{center}
\leavevmode
{}
\epsffile{laphex3.eps}
\end{center}
\end{figure}

Use convolution, Table 6.3, # 7. again to get the product.

\begin{displaymath}
u(x,y) = - \int_0^x
a \bar f\left(\xi - \frac{y}{a}\right) e^{-ap(x-\xi)} { \rm d}\xi
\end{displaymath}

This must be cleaned up. I do not want bars or step functions in my answer.

I can do that by restricting the range of integration to only those values for which $\bar f$ is nonzero. (Or $H$ is nonzero, if you prefer)

Figure 7.5: Function $\bar f$.
\begin{figure}
\begin{center}
\leavevmode
{}
\epsffile{laphex3.eps}
\end{center}
\end{figure}

Two cases now exist:

\begin{displaymath}
u(x,y) = - \int_{y/a}^x
a f\left(\xi - \frac{y}{a}\right) e^{-ap(x-\xi)} { \rm d}\xi
\qquad (x > \frac ya)
\end{displaymath}


\begin{displaymath}
u(x,y) = 0 \qquad (x < \frac ya)
\end{displaymath}

It is neater if the integration variable is the argument of $f$. So, define $\phi=\xi - y/a$ and convert:

\begin{displaymath}
u(x,y) = - \int_{0}^{x-y/a}
a f\left(\phi\right) e^{-apx+py+ap\phi} { \rm d}\phi
\qquad (x > \frac ya)
\end{displaymath}


\begin{displaymath}
u(x,y) = 0 \qquad (x < \frac ya)
\end{displaymath}

This allows me to see which physical $f$ values I actually integrate over when finding the flow at an arbitrary point:

Figure 7.7: Supersonic flow over a membrane.
\begin{figure}
\begin{center}
\leavevmode
{}
\epsffile{laphex4.eps}
\end{center}
\end{figure}


7.3.6 An alternate procedure

An alternate solution procedure is to define a new unknown:

\begin{displaymath}
v \equiv u_y - p u
\end{displaymath}

You must derive the problem for v:

The boundary condition is simply:

\begin{displaymath}
v(x,0) = f(x)
\end{displaymath}

To get the partial differential equation for $v$, use

\begin{displaymath}
\frac{\partial [P.D.E.]}{\partial y} - p [P.D.E.] \quad\quad\Rightarrow\quad\quad
v_{tt} = a^2 v_{xx}
\end{displaymath}

Similarly, for the initial conditions:

\begin{displaymath}
\frac{\partial [I.C.]}{\partial y} - p [I.C.] \quad\quad\Rightarrow\quad\quad
v(0,y) = v_x(0,y) = 0
\end{displaymath}

Figure 7.8: Problem for v.
\begin{figure}
\begin{center}
\leavevmode
{}
\epsffile{laphex5.eps}
\end{center}
\end{figure}

After finding $v$, I still need to find $u$ from the definition of $v$:

\begin{displaymath}
v \equiv u_y - p u
\end{displaymath}

Where do you get the integration constant??