C. R. Anderson and M. Reider,
A high order explicit method for the computation of flow
about a circular cylinder,
J. Comput. Phys., 125, 207-224 (1996).
C. R. Anderson and M. Reider,
Investigation of the use of Prandtl/Navier-Stokes equation
procedures for two-dimensional incompressible flows,
Phys. Fluids6, 2380-2389 (1994).
C. R. Anderson and C. Greengard,
Proceedings, AMS Seminar on Vortex dynamics and vortex methods,
Seattle, Washington, 1990,
Lectures in Applied Mathematics, Vol. 28, edited by
C. R. Anderson and C. Greengard, (American Mathematical Society,
Providence, 1991).
C. R. Anderson,
Voriticty boundary conditions and boundary vorticity generation
for two-dimensional viscous incompressible flows,
J. Comput. Phys.80, 72-97 (1989).
C. R. Anderson,
Domain decomposition techniques and the solution of
Poisson's equation in infinite domains, in Domain decomposition methods,
(SIAM, Philadelphia), 129-139 (1989).
C. Anderson and C. Greengard,
Proceedings, U.C.L.A workshop on Vortex methods,
Los Angeles, California, May 20-22, 1987,
Lectures Notes in Mathematics, Vol. 1360, edited by
C. Anderson and C. Greengard, (Springer, New York, 1988).
C. R. Anderson,
A method of local corrections for computing the velocity
field due to a distribution of vortex blobs,
J. Comput. Phys.62, 111-123 (1986).
J. T. Beale, G.-H. Cottet, S. Huberson,
Vortex Flows and Related Numerical Methods,
NATO ASI Series C, Vol. 395,
edited by J. T. Beale, G.-H. Cottet, S. Huberson,
(Kluwer Academic Publishers, Boston, 1993).
W. Benz,
Smooth particle hydrodynamics: A review, in
The numerical modelling of nonlinear stellar pulsations:
Problems and prospects, edited by J. R. Buchler,
(Kluwer Academic Publishers, Boston, 1990), p. 269-288.
P. S. Bernard and J. Thomas,
A deterministic vortex sheet method for the three-dimensional
boundary layers,
in Forum on Vortex Methods for
Engineering Applications, Albuquerque, New Mexico,
1995, (Sandia National Laboratory, Albuquerque, 1995), p. 85-103.
C. Börgers and C. Peskin,
A Lagrangian fractional step method for the incompressible
Navier-Stokes equations on a periodic domain,
J. Comput. Phys.70, 397-438 (1987).
R. Bouard and M. Coutanceau,
The early stage of development of the wake behind an impulsively
started cylinder for
,
J. Fluid Mech.100, 111-128 (1980).
J. U. Brackbill and H. M. Ruppel,
FLIP: A method for adaptively zoned, particle-in-cell
calculations of fluid flows in two dimensions,
J. Comput. Phys.65, 314-343 (1986).
H. Brezis,
Remarks on the preceding paper by M. Ben-Artzi ``Global solutions
of two-dimensional Navier-Stokes and Euler equations",
Arch. Rational Mech. Anal.128, 359-360 (1994).
F. Cassot and S. Huberson,
Numerical simulation of unsteady flows behind cylindrical structures
using a finite difference-particle superposition algorithm, in
Vortex flows and related numerical methods,
edited by J. T. Beale, G.-H. Cottet, and S. Huberson,
(Kluwer Academic Publishers, Boston, 1993), p. 159-170.
C.-C. Chang, C.-C. Chu, C.-C. Liu, C.-C. Chang,
and S.-T. Lee,
Flow induced by a pair of line vortices moving against a
circular cylinder,
J. Phys. Soc. Japan64, 1557-1578 (1995).
C.-C. Chang and R.-L. Chern,
A numerical study of flow around an impulsively started circular
cylinder by a deterministic vortex method,
J. Fluid Mech.233, 243-263 (1991).
Y. Choi, J. A. C. Humphrey, and F. S. Sherman,
Random-Vortex simulation of transient wall-driven flow in a
rectangular enclosure,
J. Comput. Phys.75, 359-383 (1988).
J. P. Choquin and B. Lucquin-Desreux,
Accuracy of a deterministic particle method for
Navier-Stokes equations,
Int. J. Numer. Methods Fluids8, 1439-1458 (1988).
A. J. Chorin,
Numerical methods for use in combustion modeling, in
Computing methods in applied sciences and engineering,
edited by R. Glowinski and J. L. Lions,
(North Holland, Amsterdam, 1980), p. 229-235.
A. J. Chorin, T. J. R. Hughes, M. F. McCracken,
and J. E. Marsden,
Product formulas and numerical algorithms,
Comm. Pure Appl. Math.31, 205-256 (1978).
W. K. Chui,
A numerical model of two dimensional incompressible flow and
heat transfer in a boundary layer,
Ph.D. thesis, Tulane University, 1993 (unpublished).
N. R. Clarke and O. R. Tutty,
Construction and validation of a discrete vortex method for the
two-dimensional incompressible Navier-Stokes equations,
Computers Fluids23, 751-783 (1994).
W. M. Collins and S. C. R. Dennis,
The initial flow past an impulsively started circular cylinder,
Quart. Journ. Mech. and Applied Math.26, 53-75 (1973).
B. Couët, O. Buneman and A. Leonard,
Simulation of three-dimensional incompressible flows with a
Vortex-in-Cell method,
J. Comput. Phys.39, 305-328 (1981).
G.-H. Cottet
Particle-grid domain decomposition methods for the Navier-Stokes
equations in exterior domains, in
Proceedings, AMS Seminar on Vortex dynamics and vortex methods,
Seattle, Washington, 1990,
Lectures in Applied Mathematics, Vol. 28, edited by
C. R. Anderson and C. Greengard, (American Mathematical Society,
Providence, 1991), p. 103-117.
G.-H. Cottet,
Boundary conditions and deterministic vortex methods for the
Navier-Stokes equations, in
Mathematical Aspects of Vortex Dynamics,
SIAM Proceedings Series, edited by
R. E. Caflisch, (SIAM, Philadelphia, 1989), p. 128-143.
S. J. Cowley, L. L. Van Dommelen, and S. T. Lam,
On the use of Lagrangian variables in unsteady boundary-layer
separation,
Phil. Trans. R. Soc. Lond. Series A333, 343-378 (1990).
S. J. Cowley,
Computer extension and analytic continuation of Blasius's
expansion for impulsive flow past a circular cylinder,
J. Fluid Mech. 135, 389-405 (1983).
P. Degond and S. Mas-Gallic,
The weighted particle method for convection-diffusion equations
Part 1: The case of an isotropic viscosity,
Math. Comput.53, 485-507 (1989).
J. W. Elliott, S. J. Cowley, and F. T. Smith,
Breakdown of boundary
layers:, i. on moving surfaces, ii. in semi-similar unsteady flow, iii. in
fully unsteady flow. Geophys. Astrophys. Fluid Dynamics25, 77-138 (1983).
A. L. Fogelson and R. H. Dillon,
Optimal smoothing in function-transport particle methods for
diffusion equations,
J. Comput. Phys.109, 155-163 (1993).
2nd International Workshop on Vortex Flows and Related
Numerical Methods, Montreal, Canada, August 20-24, 1995.
European Series in Applied and Industrial Mathematics,
Societe de Mathematiques Appliquees et Industrielles (SMAI) of France,
http://www.emath.fr/Maths/Proc/procEng.html,
ISSN 1270-900X. Also to appear as CD-ROM.
A. F. Ghoniem,
Computational methods in turbulent reacting flow, in
Proceedings, AMS/SIAM Seminar on
Reacting flows: Combustion and Chemical reactors,
Ithaca, New York, 1985,
Lectures in Applied Mathematics, Vol. 24, edited by
G. S. S. Ludford, (American Mathematical Society,
Providence, 1986), p. 199-265.
Y. Giga, T. Miyakawa, and H. Osada,
Two-dimensional Navier-Stokes flow with measures as initial vorticity,
Arch. Rational Mech. Anal.104, 223-250 (1988).
R. A. Gingold and J. J. Monaghan,
Smoothed particle hydrodynamics: theory and application to
non-spherical stars,
Mon. Not. R. Astr. Soc.181, 375-389 (1977).
J. M. R. Graham,
Computation of viscous separated flow using a particle method,
in Numerical Methods in Fluid Dynamics III,
edited by K. W. Morton and M. J. Baines,
(Clarendon press, Oxford, 1988),
p. 310-317.
J. M. R. Graham,
Application of discrete vortex methods to the computation of
separated flows, in Numerical Methods in Fluid Dynamics II,
edited by K. W. Morton and M. J. Baines,
(Clarendon press, Oxford, 1986),
p. 273-302.
L. Greengard and V. Rokhlin,
On the efficient implementation of the fast multipole algorithm,
Report YALEU/DCS/RR-602, Department of Computer Science,
Yale University, 1988 (unpublished).
P. M. Gresho,
Some interesting issues in incompressible fluid dynamics, both in the
continuum and in numerical simulation
Adv. Appl. Mech.28, 45-140 (1991).
P. M. Gresho and R. L. Sani,
On pressure boundary conditions for the incompressible Navier-Stokes
equations, Int. J. Num. Meth. Fl.7, 1111-1145 (1987).
J.-L. Guermond and L. quartapelle,
Equivalence of and formulations of the
time-dependent Navier-stokes equations,
Int. J. Numer. Methods Fluids18, 471-487 (1994).
J.-L. Guermond, S. Huberson, and W.-Z. Shen,
Simulation of 2D external viscous flows by means of a domain
decomposition method, J. Comput. Phys.108, 343-352 (1993).
F. H. Harlow,
The particle-in-cell computing method for fluid dynamics,
in Fundamental Methods in Hydrodynamics, edited by
B. Alder, S. Fernbach, and M. Rotenberg,
(Academic Press, New York, 1964). p. 319-343.
T. Y. Hou,
A survey of convergence analysis for point vortex methods, in
Proceedings, AMS Seminar on Vortex dynamics and vortex methods,
Seattle, Washington, 1990,
Lectures in Applied Mathematics, Vol. 28, edited by
C. R. Anderson and C. Greengard, (American Mathematical Society,
Providence, 1991), p. 327-339.
S. Huberson, A. Jollès, And W. Shen,
Numerical simulation of incompressible viscous flows by
means of particles method, in
Proceedings, AMS Seminar on Vortex dynamics and vortex methods,
Seattle, Washington, 1990,
Lectures in Applied Mathematics, Vol. 28, edited by
C. R. Anderson and C. Greengard, (American Mathematical Society,
Providence, 1991), p. 369-384.
S. A. Huyer and J. R. Grant,
Incorporation of boundaries for 2D triangular vorticity
element methods,
in Forum on Vortex Methods for Engineering Applications,
Albuquerque, New Mexico, 1995,
(Sandia National Laboratory, Albuquerque, 1995), p. 211-225.
S. A. Huyer and J. R. Grant,
Computation of incipient separation via solution of the vorticty
equation on a Lagrangian mesh, in
2nd International Workshop on Vortex Flows and Related
Numerical Methods, Montreal, Canada, August 20-24, 1995.
European Series in Applied and Industrial Mathematics,
Societe de Mathematiques Appliquees et Industrielles (SMAI) of France,
http://www.emath.fr/Maths/Proc/procEng.html,
ISSN 1270-900X. Also to appear as CD-ROM.
S. N. Kempka, and J. H. Strickland,
A method to simulate viscous diffusion of vorticity by convective
transport of vortices at a non-solenoidal velocity,
SAND93-1763, Sandia National Laboratory, 1993.
P. Koumoutsakos and A. Leonard,
High-resolution simulations of the flow around an impulsively
started cylinder using vortex methods,
J. Fluid Mech.296 , 1-38 (1995).
P. D. Koumoutsakos,
Direct Numerical Simulations of Unsteady Separated Flows
Using Vortex Methods,
Ph.D. thesis, California Institute of Technology, 1993 (unpublished).
Y. Lecointe and J. Piquet,
On the use of several compact methods for the study of unsteady
incompressible viscous flow round a circular cylinder,
Comput. Fluids12, 255-280 (1984).
B. P. Leonard,
A stable accurate convective modelling procedure based on quadratic
upstream interpolation,
Comput. Methods Appl. Mech. Eng.19, 59-98 (1979).
T. P. Loc and R. Bouard,
Numerical solution of the early stage of the unsteady viscous
flow around a circular cylinder: a comparison with experimental
visualization and measurements,
J. Fluid Mech.160, 93-117 (1985).
L. Lourenco, A. Krothapalli and C. Smith,
Particle image velocimetry, Lecture Notes in engineering:
Advances in fluid mechanics measurements,
edited by M. Gad-el-Hak, (Springer-Verlag, Berlin, 1989),
p. 128-199.
Z. Y. Lu and S. F. Shen,
Solution of unsteady viscous incompressible flow
past a circular cylinder by the diffusing-vortex method,
in, Numerical methods in laminar and turbulent
flow, Vol. 5, Part 1, edited by
C. Taylor, W. G. Habashi and M. M. Hafez,
(Pineridge Press, Swansea, U.K., 1987), p. 619-631.
A. Majda and J. Sethian,
The derivation and numerical solution of the equations for
zero Mach number combustion,
Combust. Sci. and Tech.42, 185-205 (1985).
C. Marchioro and M. Pulvirenti,
Mathematical theory of incompressible nonviscous fluids,
Applied Mathematical Sciences, Vol. 96,
(Springer-Verlag, New York, 1994).
J. S. Marshall and J. R. Grant,
A Lagrangian Collocation Method for Vorticity Transport
in Viscous Fluid Flows, in Forum on Vortex Methods for
Engineering Applications, Albuquerque, New Mexico,
1995, (Sandia National Laboratory, Albuquerque, 1995), p. 173.
L.-F. Martins and A. F. Ghoniem,
Vortex simulations of the intake flow in a planar
piston-chamber device,
Int. J. Numer. Methods Fluids12, 237-260 (1991).
S. Mas-Gallic and P. A. Raviart,
Particle approximation of convection diffusion problems,
Internal Report R86013, lab. Anal. Num.,
Université Pierre et Marie Curie, Paris, France, 1986 and
C.R. Acad. Sci., Paris, Sér. I 305, (1987).
S. Mas-Gallic,
Deterministic particle method: Diffusion and boundary conditions, in
Proceedings, AMS Seminar on Vortex dynamics and vortex methods,
Seattle, Washington, 1990,
Lectures in Applied Mathematics, Vol. 28, edited by
C. R. Anderson and C. Greengard, (American Mathematical Society,
Providence, 1991), p. 433-465.
F. Milinazzo and P. G. Saffman,
The calculation of large Reynolds number two-dimensional flow using
discrete vortices with random walk,
J. Comput. Phys.23, 380-392 (1977).
F. K. Moore,
On the separation of the unsteady laminar boundary
layer, in Boundary Layer Research, edited by H. G. Gortler,
(Springer-Verlag, Berlin, 1958), p. 296-311.
S. Nagano, M. Naita and H. Takata,
A numerical analysis of the two-dimensional flow past a rectangular
prism by a discrete vortex model,
Comput. Fluids10, 243-259 (1982).
H. N. Najm,
A hybrid vortex method with deterministic diffusion, in
Vortex flows and related numerical methods,
edited by J. T. Beale, G.-H. Cottet, and S. Huberson,
(Kluwer Academic Publishers, Boston, 1993), p. 207-222.
Y. Ogami and A. Y. Cheer,
Simulations of unsteady compressible fluid motion by an
interactive cored particle method,
SIAM J. Appl. Math.55, 1204-1226 (1995).
J. H. Olsen, A. Goldburg and M. Rogers,
Proceedings, Symposium on aircraft wake turbulence,
Seattle, Washington, September 1-3, 1970, edited by
J. H. Olsen, A. Goldburg and M. Rogers, (Plenum Press, New York, 1971).
F. M. Pépin,
Simulation of the Flow Past an Impulsively Started Cylinder Using a
Discrete Vortex Method,
Ph.D. thesis, California Institute of Technology, 1990 (unpublished).
V. J. Peridier, F. T. Smith, and J. D. A. Walker,
Vortex-induced boundary-layer separation. Part 2. Unsteady interacting
boundary-layer theory,
J. Fluid Mech.232, 99-131 (1991).
L. Prandtl,
Uber Flüssigkeitsbewegung bei sehr kleiner Reibung,
in Ludwig Prandtl gesammelte Abhandlüngen,
(Springer-Verlag, Berlin, 1961), 575-584 (1904).
E. G. Puckett,
Vortex methods: An introduction and survey of selected research
topics, in Incompressible computational Fluid Dynamics,
edited by M. D. Gunzburger and R. A. Nicolaides,
(Cambridge University Press, Cambridge, 1993),
p. 335-407.
P. A. Raviart,
An Analysis of Particle methods, in
Numerical Methods in Fluid Dynamics, Lecture Notes in Math., Vol.
1127, edited by F. Brezzi, (Springer-Verlag, New York/Berlin, 1985),
p. 243-324.
M. D. Rees and K. W. Morton,
Moving point, particle, and free-Lagrange methods for
convection-diffusion equations
SIAM J. Sci. Stat. Comput.12, 547-572 (1991).
L. F. Rossi,
Resurrecting core spreading vortex methods: A new scheme that is
both deterministic and convergent,
SIAM J. Sci. Stat. Comput.17, 370-397 (1996).
L. F. Rossi,
Vortex computations of wall jet flows,
in Forum on Vortex Methods for Engineering Applications,
Albuquerque, New Mexico, 1995,
(Sandia National Laboratory, Albuquerque, 1995), p. 127-146.
H. Seo,
Simulation of flow past a general shaped 2-D body translating and
oscillating in pitch using random vortex method,
Ph.D. thesis, State University of New York, Buffalo, 1991 (unpublished).
S. Shankar and L. L. van Dommelen,
A new diffusion scheme in vortex methods for three-dimensional
incompressible flows, in
2nd International Workshop on Vortex Flows and Related
Numerical Methods, Montreal, Canada, August 20-24, 1995.
European Series in Applied and Industrial Mathematics,
Societe de Mathematiques Appliquees et Industrielles (SMAI) of France,
http://www.emath.fr/Maths/Proc/procEng.html,
ISSN 1270-900X. Also to appear as CD-ROM.
S. Shankar, S.-C. Wang, and L. L. van Dommelen,
Simulating Diffusion in Vortex Methods Using a Vorticity
Redistribution Technique,
in Forum on Vortex Methods for
Engineering Applications, Albuquerque, New Mexico,
1995, (Sandia National Laboratory, Albuquerque, 1995), p. 105-124.
W.-Z. Shen and T. P. Loc
Simulation of 2D external viscous flows by means of a domain
decomposition method using an influence matrix technique,
Int. J. Numer. Methods Fluids20, 1111-1136 (1995).
G. Sod,
A compressible vortex method with application to the interaction
of an oblique shock wave with a boundary layer,
App. Numer. Math.8, 257-273 (1991).
C. Shih, L. M. Lourenco, and Z. Ding,
Control of unsteady separation over an impulsively
started circular cylinder, in AIAA Shear flow
conference, July 6-9, 1993, Orlando, FL, AIAA 93-3275,
1-12 (1993).
P. A. Smith and P. K. Stansby,
An efficient surface algorithm for random-particle simulation of
vorticity and heat transport,
J. Comput. Phys.81, 349-371 (1989).
J. H. Strickland, S. N. Kempka, W. P. Wolfe,
Viscous diffusion of vorticity in unsteady wall layers using the
diffusion velocity concept,
in Forum on Vortex Methods for
Engineering Applications, Albuquerque, New Mexico,
1995, (Sandia National Laboratory, Albuquerque, 1995), p. 69-83.
E. C. Tiemroth,
The simulation of the viscous flow around a cylinder by the
random vortex method,
Ph.D. thesis, University of California, Berkeley, 1986 (unpublished).
H. Trease, M. J. Fritts, and W. P. Crowley,
Advances in the free-Lagrange method,
edited by H. Trease, M. J. Fritts, and W. P. Crowley,
(Springer-Verlag, Berlin, 1990).
G. Tryggvason, J. Abdollahi-Alibek,
W. W. Willmarth, and A. Hirsa,
Collision of a vortex pair with a contaminated free surface,
Phys. Fluids A4, 1215-1229 (1992).
O. R. Tutty and N. R. Clarke,
Flow past NACA aerofoils using discrete vortex method,
in 2nd International Workshop on Vortex Flows and Related
Numerical Methods, Montreal, Canada, August 20-24, 1995.
European Series in Applied and Industrial Mathematics,
Societe de Mathematiques Appliquees et Industrielles (SMAI) of France,
http://www.emath.fr/Maths/Proc/procEng.html,
ISSN 1270-900X. Also to appear as CD-ROM.
L. L. van Dommelen and S.-C. Wang,
Determining unsteady 2D and 3D boundary layer separation, in
Symposium on Aerodynamics & Aeroacoustics, edited by K-Y. Fung,
(World Scientific Publishing, Singapore, 1994), p. 187-206.
L. L. van Dommelen,
Lagrangian description of unsteady separation, in
Proceedings, AMS Seminar on Vortex dynamics and vortex methods,
Seattle, Washington, 1990,
Lectures in Applied Mathematics, Vol. 28, edited by
C. R. Anderson and C. Greengard, (American Mathematical Society,
Providence, 1991), p. 701-718.
L. L. van Dommelen and E. A. Rundensteiner,
Fast, adaptive summation of point forces in the two-dimensional
poisson equation, J. Comput. Phys.83, 126-147 (1989).
L. L. van Dommelen,
Some experiments on a vortex redistribution method,
American Mathematical Society regional meeting,
Hoboken, NJ, Oct 21-22, (1989).
L. L. van Dommelen,
A Vortex Redistribution Technique,
FMRL Report TR-3, Department of Mechanical Engineering,
Florida State University, 1989 (unpublished).
L. L. van Dommelen,
Least-Maximum Solution Of Underdetermined Linear Systems,
FMRL Report TR-4, Department of Mechanical Engineering,
Florida State University, 1989 (unpublished).
L. L. van Dommelen,
Unsteady Separation from a Lagrangian point of view,
in ASME Forum on Unsteady Flow Separation, Cincinatti, Ohio,
1987, FED 52, edited by K. Ghia, p. 81-84.
L. L. van Dommelen,
Computation of unsteady separation using Lagrangian procedures,
in IUTAM Symposium on boundary layer separation, London, England,
1986., edited by F. T. Smith and S. N. Brown,
(Springer-Verlag, New York, 1987), p. 73-87.
L. L. van Dommelen and S. F. Shen,
The flow at a rear stagnation point is eventually determined
by exponentially small values of the velocity,
J. Fluid Mech. 157, 1-16 (1985).
L. L. van Dommelen and S. F. Shen,
The genesis of separation, in
Proceedings, Numerical and physical aspects of aerodynamic flows,
Long Beach, California, 1981, edited by T. Cebeci,
(Springer-Verlag, New York, 1982), p. 293-311.
L. L. van Dommelen and S. F. Shen,
The spontaneous generation of the singularity in a separating
laminar boundary layer,
J. Comput. Phys. 38, 125-140 (1980).
R. Verzicco, J. B. Flor, G. J. F. Van Heijst
and P. Orlandi,
Numerical and experimental study of the interaction between a vortex
dipole and a circular cylinder,
Exp. Fluids18, 153-163 (1995).
P. G. Williams,
Large-time boundary-layer computations at a rear stagnation point
using the asymptotic structure,
Numerical and physical aspects of aerodynamic flows,
edited by T. Cebeci,
(Springer-Verlag, New York, 1982), p. 325-335.
G. S. Winckelmans and A. Leonard,
Contributions to vortex particle methods for the computation of
three-dimensional incompressible unsteady flows,
J. Comput. Phys.109, 247-273 (1993).
H. Yamada, H. Yamabe, A. Itoh, and H. Hayashi,
Numerical analysis of a flowfield produced by a pair of
rectilinear vortices approaching a circular cylinder,
Fluid Dyn. Res.3, 105-110 (1988).
X. Zhang and A. F. Ghoniem,
A computational model for the rise and dispersion of wind-blown,
buoyancy-driven plumes-I. Neutrally stratified atmosphere,
Atmospheric Environment27A, 2295-2311 (1993).