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Two-dimensional open-cavity flows for free stream Mach number of 0.1 to 1.6 are investi-
gated with direct numerical simulations for cavities of aspect ratio 2 and 6 to characterize
the flow stability. We determine the neutral stability curve over a wide range of Mach
numbers and Reynolds numbers. In particular, we examine the effects of compressibility
on the flow in transonic regime at low Reynolds numbers. Rossiter modes are identified by
spectral analysis. The corresponding spatial structures associated with the dominant and
subdominant Rossiter modes are extracted with dynamic mode decomposition. The nature
of these structures provides us insight to their contribution to instability of the flow. The
interaction between the shock waves and the shear layer modes for the transonic flows are
investigated.

I. Introduction

Understanding the fundamental problem of flow over open cavities can provide insights into the behavior
of the flow over sunroofs, landing gear wells, gaps, and weapon bays. Instabilities can develop in the shear
layer that convects over the cavity and may develop into self-sustained oscillations. The perturbation in the
shear layer grows, convects downstream and impinges on the cavity trailing edge, which generates acoustic
waves that propagate upstream to provide a natural feedback loop. The early work of Rossiter predicts
the two-dimensional shear-layer oscillation frequency through a semi-empirical formula as a function of the
free stream Mach number.1 The mode corresponding to this frequency is referred to as the Rossiter mode.
Since then, there has been a large number of experimental and numerical studies performed to examine the
influence of Reynolds number and cavity geometry on the oscillations of the flow.2,3

The aerodynamic and acoustic fluctuations created from the flow over cavity can lead to airframe and
store damage as well as high-level noise emission. In order to mitigate such fluctuations, active flow control
strategies have been used to alter the flow field. Both open and closed loop control techniques have demon-
strated the ability to significantly reduce the pressure fluctuations and noise.4,5 However, effective control at
transonic and supersonic flow conditions remains an elusive goal. The present numerical investigation aims to
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uncover the inherent hydrodynamic instability in cavity flows such that effective flow control techniques can
be adapted. The overall goal is to develop a three-dimensional flow control methodology in the range of Mach
numbers from 0.6 to 1.6. As the first step towards this goal, we extend the stability analysis6 performed on
open cavity for subsonic flow7,8 to transonic flow considering the effects of Reynolds number, Mach number
and cavity aspect ratio. Our intention here is to perform a two-dimensional characterization of the cavity
flow to distinguish between stable and unstable cases utilizing nonlinear simulations. We apply dynamic
mode decomposition9 techniques to the unstable cases to gain insight into the dominant flow physics. The
findings from this study help serve as a foundation to extract a two-dimensional base state as input for
bi-global stability analysis in order to uncover three-dimensional instabilities. The present analysis will be
invaluable for design of efficient and effective three-dimensional flow control inputs to mitigate fluctuations.

In what follows, we present the computational approach with its validation in §II. In §III, we discuss our
findings on the two-dimensional stability characteristics over a wide range of Reynolds number and Mach
number with aspect ratio 2 and 6. The flow field is further examined through the use of the dynamic mode
decomposition to extract the temporal and spatial properties of the flow instabilities.

II. Simulation Approach

A. Computational Setup

The high-fidelity compressible flow solver CharLES 10 developed by Cascade Technologies is used to solve
the full compressible Navier–Stokes (NS) equations and study the open-cavity flows. The spatial coordinate
x, time t, density ρ, velocity u, energy e, pressure P , temperature T , are non-dimensionalized with respect
to freestream conditions and cavity depth D as

xi =
xi
d

D
, t =

tda∞
D

, ρ =
ρd

ρ∞
, u =

ud

a∞
,

e =
ed

ρ∞a2∞
, P =

P d

γP∞
, T =

T d

T∞
,

where variables with superscript d refer to the dimensional quantities and those with the subscript ∞
denotes the freestream parameters. The ratio of specific heats γ and total energy e are given by γ = cp/cv
and e = ρ(E + |u|2/2), respectively, where E is the internal energy per unit mass. The Prandtl number Pr
and Reynolds number ReD (based on cavity depth) are defined as

Pr =
cpµ∞
k

, ReD =
ρ∞U∞D
µ∞

,

where k is the thermal conductivity and µ∞ is freestream dynamic viscosity.
No sub-grid scale modeling is used for the simulations considered in this work. A structured mesh with

non-uniform spacing in both x- and y-directions is used for the two-dimensional simulations. The open-cavity
flows are specified with cavity aspect ratio (L/D), where L and D represent the length and depth of cavity,
respectively, initial boundary layer momentum thickness (θ0) at the leading edge of the cavity, the ratio of
the cavity depth to the initial momentum thickness (D/θ0) and Reynolds number (ReD). We also define a
Reynolds number based on the initial momentum thickness (Reθ ≡ ρ∞U∞θ0/µ∞).

In the present investigation, we consider the cavity geometries with aspect ratios of L/D = 2 and 6.
The computational setup for L/D = 2 is illustrated in Figure 1. The setup for L/D = 6 has a similar
configuration. The computational domain consists of the leading edge of cavity located at the origin (0, 0)
of the Cartesian coordinate system with the x-direction representing the streamwise direction in the flow
field. In order to prescribe the initial momentum boundary layer thickness at the leading edge of the cavity,
the length of floor upstream of cavity is varied from 2.4D (for lower Reθ) to 5D (for higher Reθ). The
downstream floor length is fixed at 7D while the normal distance from cavity surface to top boundary of
domain is maintained at 9D.

We study the effects of Mach number from the subsonic regime (0.1 ≤ M∞ ≤ 0.8) to the transonic
regime (0.8 ≤ M∞ ≤ 1.6), with ReD varying from 100 to 3800 for cavity aspect ratios of L/D = 2 and 6.
The wide range of Reynolds numbers and Mach numbers enables us to characterize their effects on the flow
field. The ratio of the cavity depth to the initial momentum thickness D/θ0 is maintained to be constant for
all the cases considered, as described below. To initialize the flow field, we use the incompressible Blasius
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Figure 1: Computational configuration for open cavity flow (not to scale).

boundary layer profile over the computational domain with free stream velocity U∞ and set the flow to be
quiescent inside the cavity. The same profile is used at the inlet of the cavity for L/D = 2. The variation
in boundary layer thickness for the range for Mach number from 0 to 1.4 is less than 10 percent.11 Because
this change is relatively small, the incompressible Blasius boundary layer profile is utilized. Furthermore, in
order to validate the use of the incompressible boundary layer profile, we compare the profile to the results
of the full compressible NS equations on a flat plate. Both results obtained with the incompressible and
compressible boundary layer profiles match with reasonable accuracy. As the Blasius profile is characterized
by the momentum boundary layer thickness, we fix D/θ0 = 26.4 for all the cases considered. This constraint
helps in observing the effects of Mach number, Reynolds number and cavity geometry parameterized by
momentum boundary layer thickness.

In order to study the effects of cavity aspect ratio on flow instabilities, for L/D = 6 cases, the upstream
floor length is varied to satisfy the desired momentum thickness at cavity leading edge specifying different
Reθ. We primarily consider low Reynolds number cases for L/D = 6. Lower Reynolds numbers leads to
the specification of shorter startup length upstream of the cavity for boundary layer to develop. No-slip and
iso-thermal boundary conditions are specified at the upstream and downstream floor as well as the wall of
the cavity. To damp out the existing acoustic waves and wake structures, sponge zones are applied along
the outlet and top boundaries with a length of 2D from computational boundaries.12

B. Validation

We perform a grid convergence study for both cavity aspect ratios considered in the present work, to
determine the grid resolution necessary to perform the direct numerical simulations. A Reynolds number
Reθ = 104 (ReD = 2746) and M∞ = 0.2 for L/D = 2, and Reθ = 46 (ReD = 1214) and M∞ = 0.6 for
L/D = 6 are considered for performing grid convergence study. The baseline computation is performed
on a structured mesh with approximately a half million grid points. A finer mesh with one million grid
points is chosen for comparison with the baseline case. The comparison of the v velocity history at the
midpoint location (x = L/2 and y = 0) over the cavity is shown in Figure 2. The results from the two grids
are nearly identical exhibiting sufficient grid resolution in terms of grid convergence. A higher Reynolds
number Reθ = 144 was also considered for L/D = 2 to validate the grid convergence study. The baseline
grid of half million grid points is proved sufficient to achieve reasonable grid resolution even for higher
Reynolds numbers. We compare our results for instantaneous dilatation in cavity for L/D = 2, D/θ0 = 26.4,
M∞ = 0.6, Reθ = 56.8 (ReD = 1500) with the numerical Schlieren by Brès13 for the same setup, as shown
in Figure 3 with qualitative agreement.

In the cases considered, we observe the trend for the resonant frequency predicted by the Rossiter’s
semi-empirical formula given by

Stn =
n− α

M∞ + 1/κ
,
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Figure 2: Comparison of the v-velocity at the midpoint (x = L/2, y = 0) of the open cavity. Blue solid line is the baseline
case with half million grid points and red dash line is the refined case with 1.1 million grid points. Left: L/D = 2. Right:
L/D = 6.
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Figure 3: Comparison of the numerical Schlieren from the direct numerical simulation by Brès13 (left) and the present work
(right) at M∞ = 0.6.

where M∞ represents freestream Mach number, empirical constant κ (≈ 0.57) is the average convective
speed of disturbance in shear layer, α (= 0.25) corresponds to phase delay, and n = 1, 2, . . . leads to the
nth Rossiter mode. The accuracy of the original formula decreases when M∞ > 1.4. The modified version
is given by Heller et al14 as

Stn =
n− α

M∞√
1+ γ−1

2 M2
∞

+ 1/κ
,

where γ (= 1.4) is the ratio of specific heats and other parameters are the same as original one described
above. We compare our results with frequency prediction based on these formulas and find the present
results agree well with those of others.

In addition, we carry out computations for Mach numbers of M∞ = 0.8 and 1.4 and compare the
results with Schlieren images of Krishnamurty15 and numerical results of Rowley.16 In the experiments
conducted by Krishnamurty,15 the cavity depth is 0.1 inch with L/D = 2 and the width is almost 40 times
the depth (W/D ≈ 40). Hence, the results from this experimental study can be treated as approximately
two-dimensional. We maintain a similar setup for the parameters involved except that the Reynolds number
of the experiments conducted by Krishnamurty15 is five times higher. We can observe the gradient of density
in x-direction of instantaneous acoustic field in Figure 4. The density gradient exhibits good agreement with
experiments and the simulation results. For M∞ = 0.8, the acoustic waves generated at the trailing edge
of cavity propagate upstream, but for the M∞ = 1.4 case, the acoustic wave structures are inclined in the
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Krishnamurty, M∞ = 0.82 Rowley, M∞ = 0.8 Present, M∞ = 0.8

Reθ = 56.8 Reθ = 67

Krishnamurty, M∞ = 1.38 Present, M∞ = 1.4 Present, M∞ = 1.4

Reθ = 46 Reθ = 56.8

Figure 4: Comparison of Schlieren images by Krishnamurty15 and the direct numerical simulation by Rowley16 with the
present work (∂ρ/∂x) at M∞ = 0.8 and 1.4.

streamwise direction. Further analysis of the higher Mach number cases are provided in §III.

III. Results

To understand how a self-sustained open-cavity flow oscillation is triggered, the present studies focus
on examining the effects of Re, L/D, Mach number and D/θ0. These parameters are widely discussed in
previous literatures and show significant effects on cavity flow modes. In our work, D/θ0 is fixed in all
the cases considered and the effects of the individual parameters are studied by changing them one at a
time. We expand our studies to subsonic (M∞ < 0.2), with M∞ lower than those considered by Brès,13 and
transonic regimes (0.7 < M∞ < 1.6). The interactions between shock waves and the shear layer are captured
and compressibility effects are analyzed. Extensive simulations are performed to understand the behavior of
the Rossiter modes with large M∞ and Reθ around the transitional zone between stable and unstable flow.
Cases considered in the present study are summarized in Table 1 and 2 in the appendix.

A. Flow over cavity of L/D = 2

For L/D = 2, we perform direct numerical simulation on a number of cases that span the range of Mach
numbers from M∞ = 0.1 to 1.6 and Reynolds number (ReD) up to 3800. The parameters of M∞ and ReD
are chosen to expand upon the stability analysis performed by Brès and Colonius.8 We extend their analysis
to lower and higher Mach number regimes. Furthermore, extensive simulations have been performed to
extract the modal characteristics with fixed Mach numbers and varying Reynolds number and vice versa.
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Figure 5: Numerical Schilieren (∂ρ/∂x, instantaneous), local Mach number (M , instantaneous) and vorticity (ωzD/U∞,
instantaneous and time-averaged) contours are shown for M∞ = 0.6 to 1.4 and L/D = 2 at Reθ = 46 (ReD = 1214).

To examine how shear layer modes affect the acoustic emission at the trailing edge of cavity, the density
gradient fields for Mach numbers of 0.6 to 1.4 are shown in Figure 5 at Reθ = 46. In the present work with
L/D = 2, we only observe the shear layer mode. The shear layer over the cavity rolls up and hits the trailing
edge periodically and acoustic waves are emitted and propagated into the flow. The density gradient in x-
direction shown in the first column is plotted with same contour levels from -0.8 to 0.8. From the flow field,
we can observe the density fluctuation caused by self-sustained oscillations. When free stream Mach number
increases to 0.8, the acoustic radiation emitted from the trailing edge becomes stronger and the wavelength
becomes smaller, which is also observed and discussed by Rowley.16 However, when M∞ ≥ 1.0, the acoustic
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field becomes more intense and its structure appears clearly directional. This phenomenon is also noticed in
experiments by Krishnamurty.15 The local Mach number changes from M∞ outside the cavity to subsonic
speeds within the cavity. The compression wave generated at the rear corner propagates upstream and is
reflected from the front wall, which forms a cycle inside the cavity. When it propagates upstream outside of
the cavity, it is swept by the oncoming supersonic flow, which is why we observe the bent compression waves
propagating downstream. Meanwhile, at the leading edge of cavity, shear layer oscillation leads to periodic
expansion and compression waves in the supersonic flow. These waves propagating upstream are also swept
by the oncoming supersonic flow with small part of compression ahead of the leading edge. Furthermore,
a Mach wave is formed with an angle of sin−1(1/M∞). At the trailing edge, for the oncoming flow with a
large deflection angle, a bow shock is formed due to the impingement of the shear layer on the trailing edge.

For all cases considered for the cavity of L/D = 2, we record the velocity v/U∞ time history of the point
located in the middle of the cavity shear layer (x = L/2, y = 0). We perform Fourier transform (spectral
analysis) on probe data which is collected after a minimum of 50 convective units to flush out the transients.
The simulations are conducted long enough to observe the nature of oscillations in the nonlinear regime.
If all oscillations decay over time, we infer that the system is stable. For the unstable cases, we extract
oscillation frequencies nondimensionalized by StL = fL/U∞ and compare them with Rossiter’s prediction.
The expression of semi-empirical Rossiter formula is independent of Re number, which suggests that Mach
number is the primary variable that influences the oscillation frequency. For a fixed Reθ, Strouhal number
shows a decreasing trend with increasing M∞ as represented in Figure 6.

0.5 1 1.5
0.2

0.4

0.6

0.8

1

Mode II

Mode I

Mach number

L

 

 
Rossiter mode I
Rossiter mode II
Rossiter modified I
Rossiter modified II

S
t L(a)

0.5 1 1.5
0.2

0.4

0.6

0.8

1

Mode II

Mode I

Mach number

L

 

 
Rossiter mode I
Rossiter mode II
Rossiter modified I
Rossiter modified II

S
t L

0.5 1 1.5
0.2

0.4

0.6

0.8

1

Mode II

Mode I

Mach number

L

 

 
Rossiter mode I
Rossiter mode II
Rossiter modified I
Rossiter modified II

(b)

M∞ M∞

0.5 1 1.5
0.2

0.4

0.6

0.8

1

Mode II

Mode I

Mach number

L

 

 
Rossiter mode I
Rossiter mode II
Rossiter modified I
Rossiter modified II

S
t L

0.5 1 1.5
0.2

0.4

0.6

0.8

1

Mode II

Mode I

Mach number

L

 

 
Rossiter mode I
Rossiter mode II
Rossiter modified I
Rossiter modified II

0.5 1 1.5
0.2

0.4

0.6

0.8

1

Mode II

Mode I

Mach number

L

 

 
Rossiter mode I
Rossiter mode II
Rossiter modified I
Rossiter modified II

(c)

0.5 1 1.5
0.2

0.4

0.6

0.8

1

Mode II

Mode I

Mach number

L

 

 
Rossiter mode I
Rossiter mode II
Rossiter modified I
Rossiter modified II

S
t L

0.5 1 1.5
0.2

0.4

0.6

0.8

1

Mode II

Mode I

Mach number

L

 

 
Rossiter mode I
Rossiter mode II
Rossiter modified I
Rossiter modified II

0.5 1 1.5
0.2

0.4

0.6

0.8

1

Mode II

Mode I

Mach number

L

 

 
Rossiter mode I
Rossiter mode II
Rossiter modified I
Rossiter modified II

(d)

0.5 1 1.5
0.2

0.4

0.6

0.8

1

Mode II

Mode I

Mach number

L

 

 
Rossiter mode I
Rossiter mode II
Rossiter modified I
Rossiter modified II

M∞ M∞

Figure 6: Comparison of StL = fL/U∞ from classic Rossiter semi-empirical formula (solid line), modified Rossiter formula
(dashed line) and present work for (a) Reθ = 46; (b) Reθ = 56.8; (c) Reθ = 67; (d) Reθ = 77. The blue and red symbols and
lines represent frequencies corresponding to Rossiter mode I and II, respectively. Rossiter mode I and II are dominant on the
left and right side of the black dashed line, respectively, indicated by black open circles.

From the previous work by Brès,13 on the subsonic regime (0.3 ≤ M∞ ≤ 0.6) of cavity flow, it was
inferred that mode I dominates the flow behavior in subsonic Mach number regime. However, the present
investigation reveals that as we increase M∞ to the transonic regime, the dominant mode changes from
Rossiter mode I to II as seen in Figure 6. This transition indicated by the broken vertical line in Figure
6 occurs at lower Mach number for higher Reynolds number. As shown in Figure 5, the acoustic radiation
becomes stronger at M∞ around 0.8, where the dominant Rossiter mode shifts from I to II. The strong
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acoustic wave emission can be correlated with Rossiter mode II, as it can be seen in Figure 7. For flows of
Reθ > 46, we observe that the dominant mode is Rossiter mode II. It can also be seen from this figure that
Reynolds number plays a role in switching modes.

Reθ = 46 Reθ = 67 Reθ = 77

Figure 7: Effect of Reynolds number variation on the flow field for M∞ = 0.6.

An overview of effects of M∞ and Reθ on the stability of open-cavity flows for L/D = 2 is shown in
Figure 8. When Mach number decreases towards the incompressible limit, the flow becomes more stable for
a wider range of Reynolds numbers. Meanwhile, in subsonic regime, increase in Mach number destabilizes
the flow. However, for flows with Mach numbers higher than 0.6, open-cavity flow exhibits a flattening of the
neutral stability curve. Such results have also been observed by Brès and Colonius.8 In this study, we further
observe that as the Mach number increases to the transonic regime, the velocity fluctuation v/U∞ weakens.
This can be noticed from the upward slope of the neutral stability curve across the transonic regime. This
destabilization and subsequent stabilization effects of Mach number are also observed by Yamouni.17
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Figure 8: Stability diagram of open-cavity flow for L/D = 2. The Red and blue symbols represent the two-dimensional
unstable and stable cases, respectively. The open square circles are from Brès and Colonius8 and the filled circles are from
the present study. The black dashed line represents the two-dimensional neutral stability curve. Inserted plots show vorticity
contours for representative unstable and stable cases.

Modal Structure Analysis via DMD

We investigate the unstable cases for flow over cavity with L/D = 2 to capture the dominant instability
modes. We perform dynamic mode decomposition (DMD)18–20 on cavity flow with L/D = 2 to identify the
dominant modes and discuss their relationship with the Rossiter modes. This calls for an extraction of the
flow features based on frequency content. DMD can decompose the flow structures associated with individual
frequencies and identify coherent structures within the flow. For nonlinear flow, the DMD technique provides
a linear approximation of the underlying flow.19 We perform DMD analysis on the flow which is inherently
nonlinear for the range of Mach numbers from M∞ = 0.6 to 1.4 for a fixed Reθ = 46. We collect two periods

8 of 17

American Institute of Aeronautics and Astronautics



of streamwise velocity u, wall normal velocity v and pressure P data, corresponding to dominant frequency
obtained from spectral analysis, with a minimum of 45 snapshots per period for all cases considered.

The DMD provides us with the eigenvalue spectra and the corresponding dynamic modes (eigenvectors).
We rank these dynamic modes based on their amplitude which corresponds to the norm of the individual
modes (eigenvectors). The modal amplitudes represent their individual contribution to the overall energy
content. The mode with the highest amplitude for cavity flow corresponds to the mean mode, and the one
with the second largest amplitude corresponds to the dominant oscillatory mode in our analysis. As the
frequency associated with this dominant mode should be the Rossiter frequency, we first compare in Figure
9 the Strouhal number obtained from DMD analysis with the predictions based on Rossiter’s formula.
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Figure 9: StL = fL/U∞ from classic Rossiter semi-empirical (solid line), modified Rossiter formulae (dashed line) from DMD
analysis. The blue and red squares represent frequencies corresponding to Rossiter mode I and II, respectively. The open
squares indicate the dominant modes.

We observe that the frequencies captured with DMD analysis agree well with the spectral analysis of
the probe data obtained in §IIIA. In addition, on ranking the amplitudes, we observe that the frequency
corresponding to Rossiter mode I is the dominant frequency for M∞ = 0.6 while for the cases of M∞ = 0.8
to 1.4, the Rossiter mode II is the dominant frequency, consistent with the earlier observations of mode
switching. We also obtain the subdominant frequencies for the cases considered with a lower contribution
to the overall energy content compared to the dominant mode.

The mean and Rossiter I and II modes are shown for the range of Mach numbers, M∞ = 0.6 to 1.4 in
Figures 10 and 11, for streamwise velocity and pressure, respectively. The flow structures in the mean (base)
flow are similar to the time-averaged flow field and changes with increasing Mach numbers. The structure of
baseline streamwise velocity in Figure 10 within the cavity does not change dramatically with a recirculating
region near the cavity trailing edge. For transonic and supersonic flows, compression waves are observed
close to the cavity leading edge and shock wave close to the cavity trailing edge in the base pressure contours
in Figure 11.

For the subsonic flow of M∞ = 0.6, the pressure contour for Rossiter mode II indicate that the amplitude
of pressure is small near the middle of the cavity. Although not shown, a similar inference is obtained for
the wall normal velocity contour v. Thus, the spectral analysis performed on v/U∞ in the middle of the
cavity (x = L/2, y = 0) does not detect the subdominant Rossiter mode II as seen in Figure 9. We observe
from Figures 10 and 11 that as the Mach number increases from the subsonic to the transonic regime, the
structures in the shear layer and wake of cavity associated with Rossiter mode I increase in size at a faster rate
compared to those associated with Rossiter mode II. For Mach number M∞ ≈ 1.2, the size of the shear layer
structure for mode I almost occupies the entire cavity length. For higher M∞, the growth of such structure
can no longer be supported over the open cavity. This sub-dominant Rossiter mode I is not observed for
M∞ = 1.4 with its energy distributed to the mean and other Rossiter modes. An increase in the structures
associated with Rossiter mode II in the cavity shear layer is observed from Figure 11 as the Mach number
increases from 0.6 to 1.2. While not shown, this trend is also observed from spectral analysis of probe data
from the middle of the cavity (x = L/2, y = 0). A compression of the flow field in the upstream direction
above the cavity with increasing Mach numbers is observed from the pressure contours and is consistent
with the observations in the earlier sections. Interaction of the vortices in the cavity wake with compression
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waves are observed in Rossiter mode II for M∞ = 1.2 to 1.4. A pressure oscillation generated at the rear
bottom end of the cavity is observed in the Rossiter modes I and II.

M∞ Mean (u) Rossiter Mode I (u) Rossiter Mode II (u)

0.6

0.8

1.0

1.2

1.4

Figure 10: Streamwise velocity contours of the DMD modes corresponding to mean, Rossiter I and II modes with varying
Mach numbers for flow over a cavity with L/D = 2 and Reθ = 46. The black boxes indicate the dominant Rossiter mode.
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Figure 11: Pressure contours of the DMD modes corresponding to mean, Rossiter I and II modes with varying Mach numbers
for flow over a cavity with L/D = 2 and Reθ = 46. The black boxes indicate the dominant Rossiter mode.

B. Flow over cavity of L/D = 6

DNS is also performed on the cavity flow with aspect ratio L/D = 6 for Mach numbers of 0.1 to 1.2, with
lower ReD from 100 to 1214. Similar analysis to that performed for L/D = 2 cavity is conducted to study
the effect of Reynolds number and Mach number. Figure 12 shows the flow field of cases with various M∞
at Reθ = 19. For the low M∞ = 0.3, we observe the shear layer mode. When M∞ increases to 0.6, a

11 of 17

American Institute of Aeronautics and Astronautics



large-scale vortex rolls up with an opposite sign vortex sheet being engulfed between the vortices. This type
of cavity flow is referred as wake mode by Gharib21 (for axisymmetric flow). For M∞ = 0.9, the opposite
sign vortex patch pulled between the shedding vortices decreases and the amount of fluctuation over the
cavity is weakened. Meanwhile, the compression waves are observed at this M∞ = 0.9. As shown in Figure
12, the local Mach number upstream of the trailing edge reaches sonic speeds, and a weak bow shock is
formed around the corner which is similar to L/D = 2. The acoustic wavelength is almost proportional to
the length of cavity. Increasing the Mach number to 1.2, a large recirculation zone is present over the extent
of the cavity and the flow becomes stable. A weak Mach wave is formed at the leading edge and shock waves
are generated at the trailing edge. We note that increasing Mach number destabilizes the flow in subsonic
regime and then stabilizes the flow in transonic regime which agrees with our observations for L/D = 2.

M∞ ∂ρ/∂x M ωzD/U∞

0.3

0.6

0.9

1.2

Figure 12: Instantaneous numerical Schilieren (∂ρ/∂x), local Mach number (M), and vorticity (ωzD/U∞) contours are shown
for M∞ = 0.3 to 1.2 and L/D = 6 at Reθ = 46 (ReD = 1214).

In order to characterize the frequency of cavity oscillation for L/D = 6, we place three probes tracking
velocity (v/U∞) time history at points (x/D = 1, y = 0), (x/D = 3, y = 0), (x/D = 5, y = 0), respectively.
We define the flow over cavity to be stable when all the probe data shows no fluctuations. The Strohual
number for Reθ = 10 and 19 is shown in Figure 13. At Reθ = 10, the unstable cases show that at different
location over the cavity, Rossiter mode II is the dominant mode and the only mode observed. As we increase
Reθ to 19, Rossiter mode I appears along with Rossiter mode II. This is similar to the observations for
L/D = 2 when Rossiter mode I appears at higher Reynolds number. Thus, increasing Re will induce more
Rossiter modes. For comparison, the Strohual number from cavity experiments performed at FSU with
L/D = 6, W/D = 3.85, ReD = 3.3× 105 (657 times higher than present work) are also plotted in the Figure
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13 (right) at M∞ = 0.33 and 0.43. The oncoming flow is turbulent at cavity leading edge in the experiment
while it is laminar in present simulations. In experiments, the unsteady wall pressure data is extracted and
analyzed at x/D = 6, y/D = −0.48. We compare our Rossiter modes results based on probe 3 (x/D = 5,
y/D = 0) which is closest to the probe location in the experiment.
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Figure 13: Comparison of StL = fL/U∞ from classic Rossiter semi-empirical formula (solid line), modified Rossiter formula
(dashed line) and present work for L/D = 6 at (a) Reθ = 10; (b) Reθ = 19. The blue, red, green and magenta circles represent
frequencies corresponding to Rossiter mode I, II, III and IV, respectively (1/κ = 1.75). The dominant mode is circled in black.
The black solid square represents experiments results for ReD = 3.3×105 (dashed black line with 1/κ = 1.65) and the dominant
mode is represented by open black square.

0 3 6

0

0.2

0 3 6

0

0.2

0 3 6

0

0.2

0 3 6

0

0.2

M1 = 0.4

M1 = 0.3

M1 = 0.2

M1 = 0.5

M1 = 0.6

M1 = 0.7

M1 = 0.8

M1 = 0.9

x/D x/D x/D x/D

|Y
(f

)|

Mode I Mode IVMode IIIMode II

Figure 14: The single-sided amplitude spectra of v/U∞ for each mode at different Mach number for L/D = 6 along streamwise.
Individual spectra are shifted by 0.2 in the vertical direction for graphical clarity.

Through spectral analysis for cases with Reθ = 19, we compare the single-sided amplitudes spectrum
Y (f) of velocity tracked by three probes along y = 0. Figure 14 exhibits the amplitude of |Y (f)| at the
Rossiter frequency at three spatial locations of the probes over the cavity. We find that increasing Mach
number (from subsonic to transonic) initially makes the fluctuation larger until M∞ = 0.6. The fluctuation
then decreases for higher Mach numbers suggesting stabilization of the flow. This phenomenon is observed for
all Rossiter modes existing in the flow field and especially Rossiter modes I and II are the main components
of the fluctuation in the shear layer. We also observe that as the shear layer convects from the leading edge,
the fluctuation amplifies differently for each Rossiter mode and attains its maximum at different locations
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along the cavity length.
We summarize the stability characteristics of the L/D = 6 flows. The aforementioned spectral analysis

shows that increasing Mach number from subsonic regime destabilizes the flow first and then stabilizes it for
higher Mach numbers. This observation is consistent with the neutral stability curve shown in Figure 15.
Compared to L/D = 2, the neutral stability curve for L/D = 6 shifts downward in the cases of larger cavity
aspect ratio 6 compared to L/D = 2. Simply speaking, the flows over larger aspect ratio are more unstable.
This is because for the same Mach number and Reynolds number, the length of cavity provides more space
for shear layer to evolve and amplify the disturbance. This shift of neutral stability curve is also observed by
Brès in his studies from L/D = 2 to 4. Similar to L/D = 2 cases, increasing Reynolds number destabilizes
the flow. We also observe for L/D = 6 that the neutral stability curve moves upward past M∞ = 0.6 into the
transonic regime. Currently, DMD analyses are underway to examine the flow over the cavity of L/D = 6.
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Figure 15: Stability diagram of open-cavity flow for L/D = 6. Red and blue symbols represent the two-dimensional unstable
and stable cases, respectively. The black line represents two-dimensional neutral stability curve. Inserts show the vorticity plots
for representative unstable and stable cases.

IV. Summary

Two-dimensional direct numerical simulations have been performed to examine the effects of Reynolds
number and Mach number on open rectangular cavity flow with L/D = 2 and 6. In particular, we considered
a range of Mach numbers that cover from subsonic to transonic flows (M∞ = 0.1 to 1.6). Building upon
the stability map reported by Brès and Colonius,8 we have extended the neutral stability map to higher
Mach numbers. It is observed that the flow becomes unstable for increasing Mach number up to M∞ ≈ 0.6.
The trend then reverses and shows stabilizing effects for increasing Mach number above 0.6. This influence
from compressibility is shared for both L/D = 2 and 6 cavity flows. For the higher aspect ratio cavity, the
neutral stability curve is positioned at lower Reynolds numbers. The dominant fluctuation observed in the
cavity modes correlated with Rossiter modes I and II. As predicted by Rossiter’s formula, we have noticed
that increasing Mach number lowers the Strouhal number. Reynolds number played a role in altering the
transitional Mach number for Rossiter-mode switching. The flow structures related to different oscillation
frequencies are also extracted and identified by DMD. The eigenvalues from the DMD analysis agreed well
with the oscillation frequency of the cavity flow. The spatial DMD modes were correlated with the Rossiter
modes and provided an explanation for how mode transitions take place.

Based on the two-dimensional studies, three-dimensional analysis of open-cavity flows will be performed
in upcoming studies. With the findings from this study, we will conduct linear stability analysis of two and
three-dimensional transonic open-cavity flows. The aim of the stability analysis is to provide a guideline
for developing effective flow control strategies to be performed in FSU’s subsonic and UF’s supersonic wind
tunnels.
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Appendix

Table 1: Parameter settings considered for open-cavity flows of L/D = 2. Abbreviations for stability are: S = Stable; U =
Unstable.

Cases Parameters Stability

L/D M∞ D/θ0 Reθ ReD Nonlinear (2D)

2M01Re104 2 0.1 26.4 104 2746 S

2M01Re114 2 0.1 26.4 114 3000 S

2M01Re124 2 0.1 26.4 124 3274 S

2M01Re134 2 0.1 26.4 134 3538 U

2M01Re144 2 0.1 26.4 144 3802 U

2M02Re85 2 0.2 26.4 85 2244 S

2M02Re95 2 0.2 26.4 95 2708 S

2M02Re104 2 0.2 26.4 104 2746 U

2M023Re96 2 0.23 26.4 96 2534 U

2M026Re88 2 0.26 26.4 88 2323 U

2M027Re80 2 0.27 26.4 80 2112 U

2M029Re80 2 0.29 26.4 80 2112 U

2M03Re65 2 0.3 26.4 65 1716 S

2M034Re65 2 0.34 26.4 65 1716 U

2M04Re50 2 0.4 26.4 50 1320 U

2M04Re67 2 0.4 26.4 67 1769 U

2M04Re77 2 0.4 26.4 77 2033 U

2M05Re35 2 0.5 26.4 35 924 U

2M05Re67 2 0.5 26.4 67 1769 U

2M05Re77 2 0.5 26.4 77 2033 U

2M055Re33 2 0.55 26.4 33 871 U

2M06Re9 2 0.6 26.4 9 238 S

2M06Re19 2 0.6 26.4 19 502 S

2M06Re28 2 0.6 26.4 28 739 U

2M06Re33 2 0.6 26.4 33 871 U

2M06Re35 2 0.6 26.4 35 924 U

2M06Re46 2 0.6 26.4 46 1214 U

2M06Re56.8 2 0.6 26.4 56.8 1500 U

2M06Re67 2 0.6 26.4 67 1769 U

2M06Re77 2 0.6 26.4 77 2033 U

2M07Re9 2 0.7 26.4 9 238 U

2M07Re19 2 0.7 26.4 19 502 U

2M07Re28 2 0.7 26.4 28 739 U

2M07Re46 2 0.7 26.4 46 1214 U

2M07Re67 2 0.7 26.4 67 1769 U

2M07Re77 2 0.7 26.4 77 2033 U

2M08Re19 2 0.8 26.4 19 502 S

2M08Re28 2 0.8 26.4 28 739 U

2M08Re35 2 0.8 26.4 35 924 U

2M08Re37 2 0.8 26.4 37 986 U

2M08Re46 2 0.8 26.4 46 1214 U

2M08Re67 2 0.8 26.4 67 1769 U

2M08Re77 2 0.8 26.4 77 2033 U

2M09Re46 2 0.9 26.4 46 1214 U

2M09Re56.8 2 0.9 26.4 56.8 1500 U

2M09Re67 2 0.9 26.4 67 1769 U

2M09Re77 2 0.9 26.4 77 2033 U

2M1Re35 2 1.0 26.4 35 924 U

2M1Re46 2 1.0 26.4 46 1214 U

2M1Re56.8 2 1.0 26.4 56.8 1500 U

2M12Re35 2 1.2 26.4 35 924 U

2M12Re46 2 1.2 26.4 46 1214 U

2M12Re56.8 2 1.2 26.4 56.8 1500 U

2M14Re35 2 1.4 26.4 35 924 U

2M14Re46 2 1.4 26.4 46 1214 U

2M14Re56.8 2 1.4 26.4 56.8 1500 U

2M16Re35 2 1.6 26.4 35 924 S
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Table 2: Parameter settings considered for open-cavity flows of L/D = 6. Abbreviations for stability are: S = Stable; U =
Unstable.

Cases Parameters Stability

L/D M∞ D/θ0 Reθ ReD Nonlinear (2D)

6M04Re5 6 0.4 26.4 5 132 S

6M05Re5 6 0.5 26.4 5 132 S

6M06Re5 6 0.6 26.4 5 132 S

6M07Re5 6 0.7 26.4 5 132 S

6M08Re5 6 0.8 26.4 5 132 S

6M09Re5 6 0.9 26.4 5 132 S

6M03Re10 6 0.3 26.4 10 264 S

6M04Re10 6 0.4 26.4 10 264 U

6M05Re10 6 0.5 26.4 10 264 U

6M06Re10 6 0.6 26.4 10 264 U

6M07Re10 6 0.7 26.4 10 264 U

6M08Re10 6 0.8 26.4 10 264 U

6M09Re10 6 0.9 26.4 10 264 S

6M02Re15 6 0.2 26.4 15 396 S

6M01Re19 6 0.1 26.4 19 502 S

6M02Re19 6 0.2 26.4 19 502 U

6M03Re19 6 0.3 26.4 19 502 U

6M04Re19 6 0.3 26.4 19 502 U

6M05Re19 6 0.5 26.4 19 502 U

6M06Re19 6 0.6 26.4 19 502 U

6M07Re19 6 0.7 26.4 19 502 U

6M08Re19 6 0.8 26.4 19 502 U

6M09Re19 6 0.9 26.4 19 502 U

6M12Re19 6 1.2 26.4 19 502 S

6M01Re24 6 0.1 26.4 24 634 U

6M02Re24 6 0.2 26.4 24 634 U

6M03Re46 6 0.3 26.4 46 1214 U

6M12Re46 6 1.2 26.4 46 1214 U
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