Review Questions
© Leon van Dommelen
To:
Abstract
Fundamental Quantum Mechanics for Engineers
Review Questions
Leon van Dommelen
Abstract
1
. Mathematical Prerequisites
1
.
1
Complex Numbers
1
.
2
Functions as Vectors
1
.
3
The Dot, oops, INNER Product
1
.
4
Operators
1
.
5
Eigenvalue Problems
1
.
6
Hermitian Operators
1
.
7
Additional Points
1
.
7
.
1
Dirac notation
1
.
7
.
2
Additional independent variables
1
.
7
.
3
Self assessment
2
. Basic Ideas of Quantum Mechanics
2
.
1
The Revised Picture of Nature
2
.
2
The Heisenberg Uncertainty Principle
2
.
3
The Operators of Quantum Mechanics
2
.
4
The Orthodox Statistical Interpretation
2
.
4
.
1
Only eigenvalues
2
.
4
.
2
Statistical selection
2
.
5
A Particle Confined Inside a Pipe
2
.
5
.
1
The physical system
2
.
5
.
2
Mathematical notations
2
.
5
.
3
The Hamiltonian
2
.
5
.
4
The Hamiltonian eigenvalue problem
2
.
5
.
5
All solutions of the eigenvalue problem
2
.
5
.
6
Discussion of the energy values
2
.
5
.
7
Discussion of the eigenfunctions
2
.
5
.
8
Three-dimensional solution
2
.
5
.
9
Quantum confinement
2
.
6
The Harmonic Oscillator
2
.
6
.
1
The Hamiltonian
2
.
6
.
2
Solution using separation of variables
2
.
6
.
3
Discussion of the eigenvalues
2
.
6
.
4
Discussion of the eigenfunctions
2
.
6
.
5
Degeneracy
2
.
6
.
6
Non-eigenstates
3
. Single-Particle Systems
3
.
1
Angular Momentum
3
.
1
.
1
Definition of angular momentum
3
.
1
.
2
Angular momentum in an arbitrary direction
3
.
1
.
3
Square angular momentum
3
.
1
.
4
Angular momentum uncertainty
3
.
2
The Hydrogen Atom
3
.
2
.
1
The Hamiltonian
3
.
2
.
2
Solution using separation of variables
3
.
2
.
3
Discussion of the eigenvalues
3
.
2
.
4
Discussion of the eigenfunctions
3
.
3
Expectation Value and Standard Deviation
3
.
3
.
1
Statistics of a die
3
.
3
.
2
Statistics of quantum operators
3
.
3
.
3
Simplified expressions
3
.
3
.
4
Some examples
3
.
4
The Commutator
3
.
4
.
1
Commuting operators
3
.
4
.
2
Noncommuting operators and their commutator
3
.
4
.
3
The Heisenberg uncertainty relationship
3
.
4
.
4
Commutator reference [Reference]
3
.
5
The Hydrogen Molecular Ion
3
.
5
.
1
The Hamiltonian
3
.
5
.
2
Energy when fully dissociated
3
.
5
.
3
Energy when closer together
3
.
5
.
4
States that share the electron
3
.
5
.
5
Comparative energies of the states
3
.
5
.
6
Variational approximation of the ground state
3
.
5
.
7
Comparison with the exact ground state
4
. Multiple-Particle Systems
4
.
1
Wave Function for Multiple Particles
4
.
2
The Hydrogen Molecule
4
.
2
.
1
The Hamiltonian
4
.
2
.
2
Initial approximation to the lowest energy state
4
.
2
.
3
The probability density
4
.
2
.
4
States that share the electrons
4
.
2
.
5
Variational approximation of the ground state
4
.
2
.
6
Comparison with the exact ground state
4
.
3
Two-State Systems
4
.
4
Spin
4
.
5
Multiple-Particle Systems Including Spin
4
.
5
.
1
Wave function for a single particle with spin
4
.
5
.
2
Inner products including spin
4
.
5
.
3
Commutators including spin
4
.
5
.
4
Wave function for multiple particles with spin
4
.
5
.
5
Example: the hydrogen molecule
4
.
5
.
6
Triplet and singlet states
4
.
6
Identical Particles
4
.
7
Ways to Symmetrize the Wave Function
4
.
8
Matrix Formulation
4
.
9
Heavier Atoms [Descriptive]
4
.
9
.
1
The Hamiltonian eigenvalue problem
4
.
9
.
2
Approximate solution using separation of variables
4
.
9
.
3
Hydrogen and helium
4
.
9
.
4
Lithium to neon
4
.
9
.
5
Sodium to argon
4
.
9
.
6
Potassium to krypton
4
.
10
Pauli Repulsion [Descriptive]
4
.
11
Chemical Bonds [Descriptive]
4
.
11
.
1
Covalent sigma bonds
4
.
11
.
2
Covalent pi bonds
4
.
11
.
3
Polar covalent bonds and hydrogen bonds
4
.
11
.
4
Promotion and hybridization
4
.
11
.
5
Ionic bonds
4
.
11
.
6
Limitations of valence bond theory
5
. Time Evolution
5
.
1
The Schrödinger Equation
5
.
1
.
1
Introduction to the equation
5
.
1
.
2
Some examples
5
.
1
.
3
Energy conservation [Descriptive]
5
.
1
.
4
Stationary states [Descriptive]
5
.
1
.
5
Particle exchange [Descriptive]
5
.
1
.
6
Energy-time uncertainty relation [Descriptive]
5
.
1
.
7
Time variation of expectation values [Descriptive]
5
.
1
.
8
Newtonian motion [Descriptive]
5
.
1
.
9
The adiabatic approximation [Descriptive]
5
.
1
.
10
Heisenberg picture [Descriptive]
5
.
2
Conservation Laws and Symmetries
5
.
3
Unsteady Perturbations of Systems
5
.
3
.
1
Schrödinger equation for a two-state system
5
.
3
.
2
Spontaneous and stimulated emission
5
.
3
.
3
Effect of a single wave
5
.
3
.
3
.
1
The wave
5
.
3
.
3
.
2
The Hamiltonian coefficients
5
.
3
.
4
Forbidden transitions
5
.
3
.
5
Selection rules
5
.
3
.
6
Angular momentum conservation
5
.
3
.
7
Parity
5
.
3
.
8
Absorption of a single weak wave
5
.
3
.
9
Absorption of incoherent radiation
5
.
3
.
10
Spontaneous emission of radiation
5
.
4
Position and Linear Momentum
5
.
4
.
1
The position eigenfunction
5
.
4
.
2
The linear momentum eigenfunction
5
.
5
Wave Packets in Free Space
5
.
5
.
1
Solution of the Schrödinger equation.
5
.
5
.
2
Component wave solutions
5
.
5
.
3
Wave packets
5
.
5
.
4
Group velocity
5
.
6
Almost Classical Motion [Descriptive]
5
.
6
.
1
Motion through free space
5
.
6
.
2
Accelerated motion
5
.
6
.
3
Decelerated motion
5
.
6
.
4
The harmonic oscillator
5
.
7
WKB Theory of Nearly Classical Motion
5
.
8
Scattering
5
.
8
.
1
Partial reflection
5
.
8
.
2
Tunneling
5
.
9
Reflection and Transmission Coefficients
To:
Abstract
FAMU-FSU College of Engineering
Processed by LaTeX2HTML-FU