
6 FOR, IF, WHILE
Contents

LESSON SUMMARY 1

Key areas of the online book 3

FOR LOOPS 3

A very simple example loop 4

Examine exactly what Matlab does 4

Handle repetitive operations easily 5

Forming matrices 6

Another example matrix, now requiring a nested loop 9

Doing sums with a known limit 11

Summing a Taylor series 12

A better way to do the Taylor series 13

SAVE YOUR WORKSPACE 15

IF CONSTRUCTS 15

A couple of examples of simple if statements 15

An example of a compound if statement 15

Relational operators 16

Logical operators 17

Checking condition numbers 18

Doing infinite sums to a given accuracy 20

Warning!!! 23

Taylor series done better 24

Additional remark 25

1

WHILE LOOPS 25

Getting input from a user using while 26

Doing a sum with a while loop 27

% make sure the workspace i s c l e a r
i f ~exist (’___code___ ’ , ’ var ’) ; clear ; end
% reduce need l e s s wh i te space
format compact
% reduce i r r i t a t i o n s (pausing and b u f f e r i n g)
more o f f
% s t a r t a d iary (in the a c t ua l l e c t u r e)
%diary l ec tureN . t x t

LESSON SUMMARY
This lesson is about programming. Programming includes using simple user-
interaction functions like disp (displays text), error (same, and stops process-
ing), return (stops processing the current script), break (stops processing the
current for or while loop), input (gets data from the user), and menu (asks
the user to choose an item from a menu). In addition to these elementary tasks,
there are three different key programming constructs covered in this lesson.

The first key programming construct is the "for loop." A for loop allows you
to do the same things for a number of different values of a counter. The generic
form is:

for COUNTER = START:STEP:END
THINGS_TO_DO

end

• for loops are a very good way to form matrices that have some systematic
structure. You can address the different rows of the matrix using a for
loop whose counter values are the row numbers. If needed, inside this for
loop you can put another for loop whose counter values are the column
numbers.

• for loops are also a very good way to do sums. You initialize the sum to
zero, or to the first one or more terms. Then in a for loop you add the
remaining terms. The counter of the for loop will be the term number.
(Its values will depend on exactly how you decide to number the terms.)

2

• If the sum has infinitely many terms, like for a Taylor series, it would take
infinitely long time for Matlab to do it. So you will need to restrict the
summation for loop to an ending term number that is small enough that
the summation does not take more time than you can reasonably afford
to wait.

• In addition, while doing Taylor series, usually you should evaluate the
successive terms by modifying the previous term. This can allow Matlab
to evaluate the terms quicker while at the same time avoiding overflow
and underflow problems.

The second key programming construct is an "if" statement. It allows you to
do things, or not do things, depending on whether a certain condition is true.
The simplest if statement takes the generic form

i f CONDITION
THINGS_TO_DO_IF_CONDITION_IS_TRUE

end

A more advanced construct is a compound if statement. This takes the general
form

i f CONDITION1
THINGS_TO_DO_IF_CONDITION1_IS_TRUE

e l s e i f CONDITION2
THINGS_TO_DO_IF_CONDITION1_IS_FALSE

_BUT_CONDITION2_IS_TRUE
e l s e i f CONDITION3

THINGS_TO_DO_IF_CONDITION1_IS_FALSE
_AND_CONDITION2_IS_FALSE
_BUT_CONDITION3_IS_TRUE

. . .
else

THINGS_TO_DO_IF_ALL_CONDITIONS_ARE_FALSE
end

Do NOT put a space between else and if.

• Typical conditions in if statements include comparisons of numbers using
< (less), > (greater), <= (less or equal), >= (greater or equal), ==
(equal), and ~= (not equal). You can also use the existence of a variable
or file as a condition using the exist function, like in the initialization of
this lesson.

• You can also combine simpler conditions into more complex ones using
&& (AND) and || (OR), and/or require that a condition is not true using
~ (NOT).

3

• Applications of if statements to the material of previous lessons include
having Matlab autmatically check whether a condition number of a system
of equations is excessive.

• Applications of if statements to the material of this lesson include having
Matlab terminate summing an infinite sum as soon as the sum seems to
be as accurate as you need it to be. If the terms in the sum alternate
in sign, terminate the sum at term number n when the magnitude |tn|
of that term reaches the tolerable error. Otherwise terminate when n|tn|
reaches the tolerable error. You will need to use the break statement to
stop the summing.

The third key programming construct is the "while loop." A while loop allows
you to keep doing the same things as long as a condition is true. The generic
form is:

while CONDITION
THINGS_TO_DO

end

• Note that whatever you can do with a while loop, you can also do, and
normally better, using a for loop. Unlike what you might conclude from
the online book, the main purpose of while loops is to allow computer
scientists to write impenetrable and poorly documented code.

• However, conceivably you might have a probem in which no reasonable
counter can be identified. User interactions can be of that form. Under
those circumstances, a properly commented while loop might produce
more readable and understandable code.

Key areas of the online book
Before the first lecture, in the online book do:

• 3.5 Basic input - The input function: all.

• 11.1 While loops: skip CA 11.1.2-end.

Before the second lecture, in the online book do:

• 10.1 If-else statement: all.

• 10.2 Relational operators: skip CA 10.2.3-end.

• 10.3 Multiple branches: skip CA 10.3.2-end.

• 10.4 Logical operators: skip CA 10.4.3-end.

4

FOR LOOPS
The first key programming construct to discuss is the "for loop." A for loop
allows you to do the same things for a number of different values of a counter.
The generic format is:

for COUNTER = START:STEP:END
THINGS_TO_DO

end

A very simple example loop
Enter the next code interactively and see what Matlab does. Note that all that
the disp statement does is show the quoted text on the screen. It acts as a
simplified fprintf command.

% number o f t imes we want to run the f o r loop
counterMax=3

% run a fo r loop f o r counter = 1 , 2 , . . . , counterMax
for counter=1: counterMax

disp (’Matlab i s g rea t ! ’)
end

counterMax = 3
Matlab i s g rea t !
Matlab i s g rea t !
Matlab i s g rea t !

Examine exactly what Matlab does
To follow more closely exactly what Matlab does, first put the below code in a
script test1.m. Then use the "Breakpoint" edit toolbar button to set a break
point just before the first fprintf statement. Run the script to get to the break
point, then use the "Step" button to see how Matlab processes the rest of the
script.

% pr in t out a l e ad in g message
fpr intf (’Remember %i f a c t s about Matlab : \ n ’ , counterMax)
% run a fo r loop f o r counter = 1 , 2 , . . . , counterMax
for counter=1: counterMax

fpr intf (’%i : Matlab i s g rea t ! \ n ’ , counter)
end
% pr in t out a t r a i l i n g message
disp (’Done . Try another value f o r counterMax ! ’)

5

Remember 3 f a c t s about Matlab :
1 : Matlab i s g rea t !
2 : Matlab i s g rea t !
3 : Matlab i s g rea t !
Done . Try another value f o r counterMax !

Note how Matlab processed those lines. At the for command it did not set
counter equal to the vector [1 2 3]. Instead it set counter equal to the first
number, 1. Then Matlab went on to the fprintf statement in the loop. After
that, when it saw the end command, it jumped back to the for command. It set
counter equal to the second number, 2, and then repeated the fprintf inside
the loop. And it repeated all this once more for the final number 3. But when
it jumped back to the for command after that, there were no more numbers
for counter. So Matlab then jumped forward past the end statement and went
on with the final disp statement.

Handle repetitive operations easily
Remember how messy it was in lesson2 to find and neatly print four frequencies
for the flexibly suspended string? With a for loop we can easily find and print
10! Or much more still. As before, we will number the successive frequencies
with a variable called n. We will also use n as our for loop counter.

Of course we will need the function freqEqError again. To keep it simple, we
will make this now a handle to an anonymous function.

Also we need to set the stiffness of the attachment point and the number of
frequencies to print:

% de f i n e freqEqError as a handle to an anonymous func t i on
f reqEqError=@(omega , k) sin (omega) + k∗omega∗cos (omega) ;

% se t the s t i f f n e s s
k=2

% a l s o s e t how many f r e qu en c i e s we want to p r i n t out
nMax=10

k = 2
nMax = 10

Next create a test2.m script containing the next code and run it. Feel free
again to use debug to see more closely what happens.

% pr in t out the f i r s t nMax f r e qu en c i e s
for n=1:nMax

% our o ld guess f o r f requency omega_n
omegaGuess_n=(n−0.5)∗pi ;

6

% the range in which to f i nd f requency omega_n
omegaRange_n=[omegaGuess_n omegaGuess_n+pi] ;
% ge t the accura te f requency from f z e r o
omega_n=fzero (@(omega) freqEqError (omega , k) , . . .

omegaRange_n) ;
% pr in t i t out
fpr intf (. . .

’ Frequency %2i : guess : %6.3 f ; exact : %6.3 f \n ’ , . . .
n , omegaGuess_n , omega_n)

end

Frequency 1 : guess : 1 . 5 7 1 ; exact : 1 .837
Frequency 2 : guess : 4 . 7 1 2 ; exact : 4 .816
Frequency 3 : guess : 7 . 8 5 4 ; exact : 7 .917
Frequency 4 : guess : 1 0 . 9 96 ; exact : 11 .041
Frequency 5 : guess : 1 4 . 1 37 ; exact : 14 .172
Frequency 6 : guess : 1 7 . 2 79 ; exact : 17 .308
Frequency 7 : guess : 2 0 . 4 20 ; exact : 20 .445
Frequency 8 : guess : 2 3 . 5 62 ; exact : 23 .583
Frequency 9 : guess : 2 6 . 7 04 ; exact : 26 .722
Frequency 10 : guess : 2 9 . 8 45 ; exact : 29 .862

Without the for loop, we would have had to write out the inside of the loop
for ten different values of n. That would be a lot of typing. And we would need
to make the script even bigger if we wanted a larger number of frequencies, like
20 say. Now we only need to change nMax to 20 and rerun the script. Try it!

Forming matrices
A for loop is usually a great way to generate big matrices. If we call the number
of rows (and columns) in the matrix n, then n will be a large number in typical
applications. But to keep it readable, in our example below, we will take the
value of n initially just 6:

% s i z e o f the square matrix
n=6

n = 6

However, you should definitely try larger values of n too and see what happens.
Next let’s assume that the matrix of interest has a structure that for n = 6
looks like:

7

A =


1 −1 0 0 0 0
1 −3 2 0 0 0
0 2 −5 3 0 0
0 0 3 −7 4 0
0 0 0 4 −9 5
0 0 0 0 0 1

 row number i =



1
2
3
4
5
6 = n

where i is our name for the row number. (Row numbers are commonly called i
and column numbers j.) You might encounter a matrix like the one above in,
say solving a problem including both conduction and convection of heat. But
in such an application, you might want to take the number of rows n say 1000,
rather than 6. That would then produce a 1000 × 1000 matrix, with a million
numbers in it. So in general, typing the matrix completely out as written is not
a realistic option.

Instead, note that the matrix components have some logic to them. First of all,
note that almost all components are zero. So if you start the matrix off as all
zeros, like in (put this and the following code in a script test3.m):

% i n i t i a l i z e matrix A to a l l z e ro s
A = zeros (n)

A =
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

then you get most components correct right off the bat. You now only need to
worry about fixing up the much smaller number of nonzero components.

Next note from the n = 6 example,

A =


1 −1 0 0 0 0
1 −3 2 0 0 0
0 2 −5 3 0 0
0 0 3 −7 4 0
0 0 0 4 −9 5
0 0 0 0 0 1

 row number i =



1
2
3
4
5
6 = n

that there is a definite logic to the nonzero coefficients. Or at least there is
if you ignore the first row, i = 1, and the last row, i = n. The intermediate
rows, row numbers i = 2 to n− 1, all have a similar structure. To describe this
mathematically, first note that on the "main diagonal", which runs from the top
left corner to the bottom right corner, all components are negative.

8

What distinguishes this main diagonal mathematically is that on it, the column
number j equals the row number i. And remember that in Matlab you can
address the matrix component with row number i and column number j as
A(i,j). Mathematicians would indicate that same component as ai,j ; in other
words they use a lower case letter a and subscripts rather than an upper case
A and parentheses. The bottom line is that in Matlab the component on the
main diagonal in row i is indicated by A(i,i). Note: that is (i,i), not (1,1) as it
looks like on my screen in low resolution! In mathematics, it is written as is ai,i.
For our particular example matrix, the components ai,i on the main diagonal
are all negative.

Next note that the components immediately to the right of the main diagonal
have the column number j one greater than i. So these components can be writ-
ten as ai,i+1. These components form what is called the "first superdiagonal".
Also note from the example matrix above, that the values of these components
are very simple: they are simply equal to the row number i:

ai,i+1 = i

Next note that the components immediately to the left of the main diagonal
have column number j = i − 1. These components, which can be written as
ai,i−1, form what is called the "first subdiagonal". Note from the example matrix
above that the values of these components are again simple. They are just one
smaller than the row number:

ai,i−1 = i− 1

Finally, note that the components on the main diagonal equal minus the sum
of the subdiagonal and superdiagonal components. So

ai,i = − (i− 1)− i = −(2i− 1)

We can use the above three formulae to put all the correct nonzero components
in the intermediate rows in matrix A. All it needs is a for loop with limits i =
2 to i = n-1:

% se t the nonzero components o f the in t e rmed ia t e rows
for i =2:n−1

A(i , i −1)=i −1;
A(i , i)=−(2∗ i −1) ;
A(i , i +1)=i ;

end
% show the matrix a f t e r t h i s
A

A =
0 0 0 0 0 0
1 −3 2 0 0 0
0 2 −5 3 0 0

9

0 0 3 −7 4 0
0 0 0 4 −9 5
0 0 0 0 0 0

Now the only thing left to do is also fix up rows 1 and n. That is easy after
looking at the example matrix as written out earlier:

% se t the nonzero components o f f i r s t row i=1
i =1;
A(i , i)=1;
A(i , i +1)=−1;
% show the matrix a f t e r t h i s
A
% se t the nonzero components o f l a s t row i=n
i=n ;
A(i , i)=1;
% show the f i n a l matrix a f t e r t h i s
A

A =
1 −1 0 0 0 0
1 −3 2 0 0 0
0 2 −5 3 0 0
0 0 3 −7 4 0
0 0 0 4 −9 5
0 0 0 0 0 0

A =
1 −1 0 0 0 0
1 −3 2 0 0 0
0 2 −5 3 0 0
0 0 3 −7 4 0
0 0 0 4 −9 5
0 0 0 0 0 1

Note that it is more readable to process the rows in the normal order. To do
so, you should move setting the first row i = 1 before the for loop on the
intermediate rows.

Now try running test3, and check that you get the given matrix. Then run
test3 again for smaller and larger values of n and check that you get smaller
and larger versions of the same matrix.

Another example matrix, now requiring a nested loop
Remember the following bad (singular) matrix from lesson 5?

10

Abad =

 1 2 3
4 5 6
7 8 9

 row number i =

 1
2
3 = n

In that lesson we typed the matrix completely out as

ABad = [1 2 3 ;
4 5 6 ;
7 8 9]

But with for loops, we can create it in a more systematic way that allows bigger
matrices like that to be formed.

To do so, first note that in any given row, when the column number j increases
by 1, then the corresponding component ai,j increases by 1. So apparently, the
mathematical expression for the components is of the form:

ai,j = j + something rather

By looking at the first components of the first few rows, you can quickly identify
"something rather": it is zero for row i = 1, and increases by n each time the
row number i increases by 1, So "something rather" must be (i−1)n. That then
gives the final expression for the matrix components as:

ai,j = j + (i− 1)n

The new programming concept is that in this case, we need to set components
not just for all possible values of row number i, but also for all possible values
of column number j. This can be done with what is called a "nested" for loop;
in particular it can be done by a for loop on column number j inside a for
loop on row number i.

First however, set the desired size of the matrix to create.

% s i z e o f the matrix to c r ea t e
n=3

n = 3

The code to create the matrix, with its nested for loops, is as shown below.
Put this code in a script test4.m and then run it:

% i n i t i a l i z e the matrix to the co r r e c t s i z e , wrong va l u e s
ABad=zeros (n) ;
% process a l l row numbers i
for i =1:n

% se t the va l u e s f o r a l l column numbers j in row i
for j =1:n

% se t the r i g h t va lue o f the component
ABad(i , j)=j+(i −1)∗n ;

11

end
end
% pr in t out the r e s u l t
fpr intf (’Done c r e a t i n g matrix ABad f o r n = %i : \ n ’ ,n)
ABad
% check whether i t i s s i n gu l a r
condABad=cond(ABad)

Done c r e a t i n g matrix ABad f o r n = 3 :
ABad =

1 2 3
4 5 6
7 8 9

condABad = 6.0262 e+16

Also try running test4 for smaller and larger values of n and check that the
matrix is singular for all values of n greater than 2.

Doing sums with a known limit
A for loop is also a great way to do sums. For example, suppose that we want
to evaluate the sum S given by

S = 1
12 + 1

22 + 1
32 + . . .+ 1

10002

A for loop with a term number n from 1 to 1000 will evaluate this quite nicely.

First however, we need to write the sum out mathematically with a summation
symbol:

S =
nmax∑
n=1

tn tn = 1
n2 nmax = 1000

because that is the way it is programmed.

Now first set the number of terms to sum:

% the l a s t term to sum
nMax=1000

nMax = 1000

Next put the following code in a script test5.m and run it. (Note that we call
the sum total rather than sum. The reason is that the name sum is already
used for something else in Matlab.)

% i n i t i a l i z e the sum to zero (no terms summed ye t)
t o t a l =0;

12

% in a f o r loop from 1 to nMax , add each term in turn
for n=1:nMax

% compute term t_n
t_n=1/n^2;
% add term t_n to the sum
t o t a l=t o t a l+t_n ;

end

% pr in t out the ob ta ined sum
t o t a l

t o t a l = 1.6439

As a sanity check, this should be somewhat less than the value of the infinite
sum, which is 1.6449.

Also try a bigger value for nMax and see what happens.

Summing a Taylor series
Not all mathematical functions are provided by Matlab, or any numerical soft-
ware, in canned form. When you encounter such a function, one option to
evaluate it is to sum its Taylor series. (That assumes that you know the Taylor
series, but usually you do. For example, the function might be the integral of a
function whose Taylor series you can easily find.)

As a very simple example let’s evaluate ex by summing its Taylor series. (We
will ignore the fact that you could get the value in Matlab much more simply
as exp(x). Instead we will use exp(x) to check the error in our result)

The Taylor series of ex is according to calculus:

ex = 1 + x1

1! + x2

2! + x3

3! + . . .

Writing this using a summation symbol gives

ex =
∞∑

n=0
tn tn = xn

n!

Note also that we cannot really sum infinitely many terms. We will have to stop
summing at some large value of n, call it nmax.

As an example, we will initially take x equal to 1 and nmax equal to 10:

% se t the x va lue at which to do the Taylor s e r i e s
x=1
% se t the number o f the term at which to s top summing

13

nMax=10

x = 1
nMax = 10

Next put the following code in a script test6.m and run it. (Save test5.m as
test6.m and then modify that.)

% i n i t i a l i z e the sum to term t_0 = 1
n=0;
t_n=1;
t o t a l=t_n ;

% loop to add nMax more terms t_1 , t_2 , . . . to the sum
for n=1:nMax

% compute term t_n
t_n=x^n/ f a c t o r i a l (n) ;
% add term t_n to the sum
t o t a l=t o t a l+t_n ;

end

% pr in t out the ob ta ined va lue
t o t a l

% see how b i g the error r e a l l y i s
t o t a lE r r o r=to ta l−exp(x)

t o t a l = 2.7183
t o t a lE r r o r = −2.7313e−08

Note that we did not initialize total to zero but to the first term t0 in the sum,
which is 1. Then we started the for loop at n = 1 instead of n = 0. Doing this
avoids a problem when x = 0. Can you see what problem that is?

Next try a smaller value for nmax, like 5, and see what happens to the error.
Reset nmax to 10 and try different values for x, like x = 0.5 and x = 2. Then
try x = 10 and note that now there is almost 100% error. To fix this, increase
nmax to 30. Then try x = −10 and note that now again there is almost 100%
error.

A better way to do the Taylor series
The previous way of doing the Taylor series of ex is not ideal. For one, evaluating
xn for large values of n is a slow process for Matlab. And so is evaluating n!.

And far worse than that is that n! will readily overflow for large values of n
(above n = 170 in Matlab). And so will xn if the magnitude of x exceeds 1.

14

So look once more at that Taylor series:

ex = 1 + x

1 + x2

1 2 + x3

1 2 3 + . . . =
∞∑

n=0

xn

n!

Note that every term tn in the sum, except the first, can be computed from the
previous term by multiplying that previous term by x/n:

tn = tn−1
x

n

That avoids overflow and is much more easy to compute for Matlab too.

While we cannot evaluate the first term t0 this way, we were already summing
term t0 separately anyway.

Let’s try it. First reset the values of x and nmax to what they were earlier:

% se t the x va lue at which to do the Taylor s e r i e s
x=1
% se t the number o f the term at which to s top summing
nMax=10

x = 1
nMax = 10

Next put the following code in a script test7.m and run it. (Save test6.m as
test7.m and then modify that.)

% i n i t i a l i z e the sum to term t_0 = 1
n=0;
t_n=1;
t o t a l=t_n ;

% loop to add nMax more terms t_1 , t_2 , . . . to the sum
for n=1:nMax

% compute term t_n from the prev ious one
t_n=x/n∗t_n ;
% add term t_n to the sum
t o t a l=t o t a l+t_n ;

end

% pr in t out the ob ta ined va lue
t o t a l

% see how b i g the error r e a l l y i s
t o t a lE r r o r=to ta l−exp(x)

t o t a l = 2.7183

15

t o t a lE r r o r = −2.7313e−08

SAVE YOUR WORKSPACE
At the end of the first lecture that covers this lesson, be sure to save your
workspace:

save l e c tureN

and keep the test....m scripts for now.

Then at the start of the second lecture, you can use the

load l e c tureN

command to continue right where you left off.

IF CONSTRUCTS
An if construct is useful if you want to do some things only under specific
conditions.

A couple of examples of simple if statements
A simple if statement takes the generic form:

i f CONDITION
THINGS_TO_DO_IF_CONDITION_IS_TRUE

end

For example, assuming that 1 and 2 are different numbers, which one is greater?
You say 2? Well, let’s see whether Matlab agrees with you, shall we?

Create a script test8.m containing the following code and run it:

% i f 1 i s b i g g e r than 2 , t e l l t he c l a s s t ha t i t i s wrong
i f 1 > 2

disp (’The c l a s s i s wrong , 1 i s b i gge r than 2 ! ’)
end
% i f 2 i s b i g g e r than 1 , t e l l t he c l a s s t ha t i t i s r i g h t
i f 2 > 1

disp (’The c l a s s i s r i ght , 2 i s b i gge r than 1 ! ’)
end
disp (’Good that that i s s e t t l e d . ’)

The c l a s s i s r i ght , 2 i s b i gge r than 1 !
Good that that i s s e t t l e d .

16

An example of a compound if statement
The most general compound if statement takes the generic form:

i f CONDITION1
THINGS_TO_DO_IF_CONDITION1_IS_TRUE

e l s e i f CONDITION2
THINGS_TO_DO_IF_CONDITION1_IS_FALSE

_BUT_CONDITION2_IS_TRUE
e l s e i f CONDITION3

THINGS_TO_DO_IF_CONDITION1_IS_FALSE
_AND_CONDITION2_IS_FALSE
_BUT_CONDITION3_IS_TRUE

. . .
else

THINGS_TO_DO_IF_ALL_CONDITIONS_ARE_FALSE
end

Note: You can have more than one elseif part in a row, or none at all. And
you can leave the final else part away. But you cannot have a space between
else and if. That would make the if part a part of THINGS_TO_DO, which
is different.

As an example, let’s do a bit better job in comparing 1 and 2. Put the next
code in a script test9.m. (Save test8.m as test9.m and then modify that.)

% see whether 1 or 2 i s b i g g e r
i f 1 > 2

disp (’The c l a s s i s wrong , 1 i s b i gge r than 2 ! ’)
e l s e i f 2 > 1

disp (’The c l a s s i s r i ght , 2 i s b i gge r than 1 ! ’)
else

disp (’The c l a s s i s wrong , 1 i s equal to 2 ! ’)
end
disp (’Good that that i s s e t t l e d . ’)

The c l a s s i s r i ght , 2 i s b i gge r than 1 !
Good that that i s s e t t l e d .

Relational operators
The standard "relational operators" are

Symbol Meaning
−−−−−−−−−−−−−−−−−−−−−−−−−−−

> grea t e r
< l e s s

17

>= grea t e r or equal
<= l e s s or equal
== equal
~= not equal

Note that to check equality, you need two equal signs. A single equals sign
would be an assignment statement, not a test for equality.

As an example, let’s see which number is bigger, π/2 or
√

2. To do so, create a
test10.m script for the next code and run it:

% eva l ua t e the two numbers
h a l f p i=pi /2 ;
r t2=sqrt (2) ;
% now see which one i s the b i g g e s t
i f h a l f p i > rt2

disp (’ p i /2 i s g r e a t e r than sq r t (2) ! ’)
e l s e i f h a l f p i < rt2

disp (’ p i /2 i s l e s s than sq r t (2) ! ’)
e l s e i f h a l f p i==rt2

disp (’ p i /2 i s equal to sq r t (2) ! ’)
else

disp (’Matlab has gone crazy ! ’)
end
disp (’Good that that i s s e t t l e d . ’)

p i /2 i s g r e a t e r than sq r t (2) !
Good that that i s s e t t l e d .

Logical operators
Logical operators allow you to create more complex conditions from simpler
ones. The standard logical operators are ~(NOT), && (AND), and || (OR):

% Log i ca l NOT: CONDITION must not be t rue
~ CONDITION

% Log i ca l AND: Both cond i t i on s must be t rue
CONDITION1 && CONDITION2

% Log i ca l OR: At l e a s t one cond i t i on must be t rue
CONDITION1 | | CONDITION2

The above operators are in order of precedence. Common sense would further
indicate that logical operators should always have lower precedence than nu-
merical comparisons. However, crazy as it may be, Matlab gives ~ precedence

18

over numerical comparisons. So be sure to use parentheses as needed to be safe
and for readability.

Note that a single & or | is equivalent to && or || as far as we are concerned.
However, use of a single & or | is not recommended by Matlab as these operators
may behave differently in a more general context.

(If not in an if or while, & and | behave "non-short-circuiting"; Matlab will
continue to evaluate CONDITION2 even if it already knows the final result of the
combined condition from CONDITION1. For example, if not used in an if or
while statement, a condition like

exist(’myfun.m’,’file’)&(myfun(1)>1)
would create a Matlab error if function file myfun.m does not exist; Matlab
would still try to evaluate the second condition even though it already knows
that function myfun does not exist. Using && instead of & prevents that.)

There is also XOR, (exactly one condition must be true), but you rarely want
it, and if you do, you can do the same thing using ~, &&, and ||.

The next examples explore whether π is in between 3 and 4 but not 3.2 as the
"Indiana pi bill" would have it. Put them in a script test11.m and run it:

% we ∗need∗ the paren these s ; ~ t a k e s precedence over ==!
i f pi>3 && pi<4 && ~ (pi==3.2)

disp (’ p i i s between 3 and 4 and not 3 . 2 ! ’)
end

% the next might be more readab l e ?
i f (pi>3) && (pi<4) && ~ (pi==3.2)

disp (’ p i i s between 3 and 4 and not 3 . 2 ! ’)
end

% d e f i n i t e l y the be low i s more readab l e
i f (pi>3) && (pi<4) && (pi~=3.2)

disp (’ p i i s between 3 and 4 and not 3 . 2 ! ’)
end

pi i s between 3 and 4 and not 3 . 2 !
p i i s between 3 and 4 and not 3 . 2 !
p i i s between 3 and 4 and not 3 . 2 !

Checking condition numbers
Remember solving the linear system of equations in lesson5? The coefficient
matrix and right hand side of the system were:

19

% c o e f f i c i e n t matrix
A = [1 2 3 ;

0 5 6 ;
7 8 9] ;

% r i g h t hand s i d e vec t o r
b = [3 ;

2 ;
9] ;

At that time we had to manually check the condition number of the matrix
and draw conclusions. Now, using if statements, we can let Matlab check the
condition number and automatically take appropriate action based on the value.

One reasonable way to do so is shown below. Put it in a script test12.m and
run it.

% f ind the cond i t i on number o f matrix A
condA=cond(A)

% the r e l a t i v e error in the s o l u t i o n due to inaccuracy
xRelerrDueToMatlab=condA∗eps

% draw an appropr ia t e conc lu s ion
i f xRelerrDueToMatlab >= 1

% re f u s e to s o l v e the system
disp (’ ∗∗∗ Error : There i s no rea sonab l e s o l u t i o n ! ’)

else
% so l v e the system
x = A \ b
% i f the error seems s i g n i f i c a n t , warn
i f xRelerrDueToMatlab > 0.001

fpr intf (. . .
’ ∗∗ Warning : est imated e r r o r %1E%%!\n ’ , . . .
xRelerrDueToMatlab ∗100)

end
end

condA = 37.939
xRelerrDueToMatlab = 8.4241 e−15
x =

1
−2
2

20

Next try to set component A(2,1) to 4 and then run the script again. The script
should refuse to process the matrix. Then set component A(2,1) to 4-100∗eps
and see what happens if you run the script again. It should warn for excessive
Matlab error.

Note that, at least in my opinion, it is ugly to have so much code inside an else
clause. If you replace the disp function by the error function, you do not need
the else. That is shown in this alternative version of test12.m:

% f ind the cond i t i on number o f matrix A
condA=cond(A)

% the r e l a t i v e error in the s o l u t i o n due to inaccuracy
xRelerrDueToMatlab=condA∗eps

% draw an appropr ia t e conc lu s ion
i f xRelerrDueToMatlab >= 1

% re f u s e to s o l v e the system and s top execu t ing
error (’ ∗∗∗ Error : There i s no rea sonab l e s o l u t i o n ! ’)

end

% so l v e the system
x = A \ b

% i f the error seems s i g n i f i c a n t , warn
i f xRelerrDueToMatlab > 0.001

fpr intf (. . .
’ ∗∗ Warning : est imated e r r o r %1E%%!\n ’ , . . .
xRelerrDueToMatlab ∗100)

end

condA = 37.939
xRelerrDueToMatlab = 8.4241 e−15
x =

1
−2
2

If there is no reasonable solution, the error function will print the message and
terminate execution of the script. So the system will not be solved in that case
even without the else.
A somewhat different way to do it is to still use the disp command, but follow
it immediately by a return command. The return command simply stops
execution of the script (but does not inform Matlab behind the scenes that it
was due to an error).

21

Doing infinite sums to a given accuracy
Earlier in this lesson, we did the sum

S = 1
12 + 1

22 + 1
32 + . . .+ 1

n2
max

=
nmax∑
n=1

1
n2

to nmax = 1000 terms.

This time, however, we would like to see what we get when we sum infinitely
many terms. But of course, that is not possible. It would take infinitely much
time for Matlab to sum infinitely many terms.

Instead what we can do is try to sum to some small remaining error that we are
willing to accept. Such an acceptable error is called a "tolerance". For example,
in this case we might decide that a remaining error of 0.0001 is tolerable.

To see whether we have reached the tolerance at any given term number n,
however, requires that we estimate the error that comes from not summing the
remaining terms. Of course, estimating that error can only be an educated
guess. (We would know the exact error only if we really summed the remaining
terms, which is exactly what we cannot do.)

So how should we estimate the remaining error in the sum at any stage in the
summing?

1. One way is to simply assume that the magnitude |tn| of the term currently
being added to the sum gives the estimated error. This or its equivalent
is being done, and published in leading journals, by uncounted numbers
of "numerical analysts" all over the place. In the large majority of the
cases it does not work. If the "analyst" is lucky, it just means that the
true error in the analyst’s result is vastly larger than the analyst believes.
However, there are well known and common cases where using the |tn|
error estimate, "analysts" found and published solutions that did not exist.
From calculus you should still know that using |tn| as estimated error only
works correctly if the sum is "alternating", i.e. the terms tn change sign
all the time.

2. If the sum is not alternating, the usual case, you should assume that the
estimated error is about n times the magnitude |tn| of the term currently
being added to the sum. The factor n makes no big difference if the sum
"rapidly converges", i.e. it takes a relatively small number of terms to
get an accurate answer. (You should be so lucky.) In the usual case of
a slowly converging sum, the factor n makes a big difference. And the
factor n works very well for the sums you typically encounter. If you want
a common sense derivation of that: "If you have already summed a 1,000
terms and only made slow progress, do you really think that another single
term, or even 10 of them, are going to make all the difference?"

22

Using the appropriate termination criterion, an if statement can be used to
check whether the estimated error has become smaller than the tolerance. If it
has, you can use the "break" statement to stop the summation. More precisely,
a break statement will terminate the loop that it is in, and with it, any summing
done inside it.

In the current example sum, we can check whether we are doing things right
because the value of the infinite sum is actually known: it should be π2/6.

First we need to set the tolerance we allow. Also, we should set some absolute
limit on the number of terms that Matlab may sum. Otherwise we may wait 10
years for a result that never materializes.

% the a l l owed t o l e r anc e in va lue
t o l =0.0001

% the maximum number o f terms we would ever want to sum
nMax=100000

t o l = 1.0000 e−04
nMax = 100000

Next put the following code in a file test13.m and run it. (Save test5.m as
test13.m and then modify that.)

% i n i t i a l i z e the t o t a l sum to zero (no terms summed ye t)
t o t a l =0;

% add terms u n t i l i t seems accura te but no more than nMax
for n=1:nMax

% compute term t_n
t_n=1/n^2;
% add term t_n to the sum
t o t a l=t o t a l+t_n ;
% f ind the curren t a pp r op r i a t e l y es t imated error
e s tEr ro r=n∗abs (t_n) ;
% t e s t whether we can s top summing
i f e s tEr ro r <= t o l

% stop summing (" jump out o f the f o r loop ")
break

end
end

% pr in t out the r e s u l t s
fpr intf (’The found i n f i n i t e sum i s %.4 f \n ’ , t o t a l)
to ta lExact=pi ^2/6;
t rueError=abs (t o ta l−to ta lExact) ;

23

fpr intf (’The exact i n f i n i t e sum i s %.4 f \n ’ , to ta lExact)
fpr intf (’The est imated e r r o r i s %.1E\n ’ , e s tEr ro r)
fpr intf (’The true e r r o r i s %.1E\n ’ , t rueError)

% in t e r p r e t the r e s u l t s
i f e s tEr ro r > t o l

disp (’ ∗∗∗ Requested accuracy not met , even a f t e r ’)
fpr intf (’ summing %i terms ! \ n ’ ,n)
disp (’Try a s t i l l l a r g e r number o f terms ? ’)

e l s e i f t rueError > 10∗ e s tEr ro r
disp (’Maybe your est imated e r r o r i s no good? ’)

else
fprintf (’ Needed to sum %i terms . \ n ’ ,n)

end

The found i n f i n i t e sum i s 1 .6448
The exact i n f i n i t e sum i s 1 .6449
The est imated e r r o r i s 1 . 0E−04
The true e r r o r i s 1 . 0E−04
Needed to sum 10000 terms .

Note that while in this sum the estimated error is the same as the true error,
this is a coincidence. In general the estimated error is only a rough ballpark of
the true error.

You should also try what happens if you use the bad estimated error |tn|. Do
you still get the sum to about the requested tolerance?

Next try also summing the sum with terms 1/n instead of 1/n2. Use tolerance
0.001. Try both the bad and the good estimated error. What is the exact sum?

Warning!!!
Students who end up with frozen homework programs, or messages that Java or
Adobe are misbehaving: Matlab is not to blame, nor are Java or Adobe. The
students themselves are to blame.

These students have incorrectly implemented the break command, or even omit-
ted it completely.

If they get messages about Java or Adobe, then they have also emitted a semi-
colon. Trying to publish 100,000 message lines is a sure recipe for crashing
something.

Please check operation of your break command before seeing TA or instructor.
And make sure all semicolons are there. If you do want to see some numbers that

24

are produced while doing the sum, you must reduce nMax to some reasonable
number like 100 instead of 100,000.

Taylor series done better
If we want to sum a Taylor series, we probably want the most accurate answer
we can possibly get. To achieve this, note that in a convergent Taylor series,
eventually the terms become smaller and smaller. Finally they "underflow" and
become zero. After that point, it is obviously useless to keep summing. However
many times you add zero, it is not going to change the value.

But even when the terms are not yet underflowing, they may be too small to
further change the value of the sum. That is because numbers on a computer
have round-off errors. As soon as the individual terms in the sum become smaller
than the round off error in the accumulated sum, they are already unable to
change the sum.

So the smart way to do Taylor series is to keep summing until you have ensured
that the sum can no longer change. Let’s try it for our previous example of ex.

First we need to again set a desired value for x and a limit on what number of
terms we could possible sum in a reasonable time.

% the x va lue at which we want the Taylor s e r i e s
x=1

% the maximum number o f terms we would ever want to sum
nMax=100000

x = 1
nMax = 100000

Next put the following code in a script test14.m. (Save test7.m as test14.m
and then modify that.)

% i n i t i a l i z e the sum to term t_0 = 1
n=0;
t_n=1;
t o t a l=t_n ;

% loop to add up to nMax more terms to the sum
for n=1:nMax

% compute term t_n from the prev ious one
t_n=x/n∗t_n ;
% see whether the term can s t i l l change the sum
totalChange=(t o t a l+t_n)−t o t a l ;
% i f i t cannot , we can s top

25

i f totalChange==0
break

end
% add term t_n to the sum
t o t a l=t o t a l+t_n ;

end
i f totalChange==0

fpr intf (’ Converged a f t e r %i terms . \ n ’ ,n)
else

fprintf (’ ∗∗∗ Not converged a f t e r %i terms ! \ n ’ ,n)
end

% pr in t out the ob ta ined va lue
t o t a l

% see how b i g the error r e a l l y i s
t o t a lE r r o r=to ta l−exp(x)

Converged a f t e r 18 terms .
t o t a l = 2.7183
t o t a lE r r o r = 4.4409 e−16

Additional remark
In some sums, the terms tn might contain oscillating factors, like sin(nx), say.
When you compute totalChange, leave out these oscillating factors from tn.
Otherwise you might incorrectly conclude that the sum has converged at some
value of n, just because at that particular value of n, sin(nx) happens to be
very small or zero.

You might want to remember that such oscillating factors are very common in
a special kind of sum called a "Fourier Series". Yes, they are worse than Taylor
series.

WHILE LOOPS
The while command is similar to the for command in that it loops. However,
while stays looping as long as some condition remains true. The generic form
is:

while CONDITION
THINGS_TO_DO

end

Note that if there is a mistake in CONDITION, a while loop can keeping looping
forever. In most cases for is a better choice than while for looping. But a while

26

command can be appropriate in cases where you have no clue when looping will
stop, like in user interaction.

Getting input from a user using while
Let’s keep looping until the user admits that Matlab is great. Put the next code
in a script test15.m and run it:

% Do NOT de l e t e : preprepared ve r s i on o f t e s t 1 5 .m

% ask the user f o r h i s / her name
name=input (’ P lease ente r your name : ’ , ’ s ’) ;

% de f i n e the menu header
header=[name ’ admits that : ’] ;

% loop u n t i l we ge t the r i g h t answer
cho i c e =0;
while cho i c e ~= 4

% show the menu and ge t the user ’ s cho ice
cho i c e=menu(header , . . .

’Matlab i s h o r r i b l e . ’ , . . .
’Matlab i s too much work . ’ , . . .
’Matlab i s OK. ’ , . . .
’Matlab i s g r ea t ! ’) ;

% change the header in case t ha t the answer i s wrong
header=’Wrong answer . Try again : ’ ;

end

% confirm tha t the user made the r i g h t cho ice
disp (’ I t i s good to see you agree with that ! ’)

Unfortunately, an interactive script like the above one cannot be published in
Matlab. So below is a fake one that shows roughly what happens:

% ask the user f o r h i s / her name
fpr intf (’ P lease ente r your name : ’)
% in t h i s f ake s c r i p t g e t the user ’ s name from the system
name=getenv (’USER ’) ; % Unix ve r s i on
%name=getenv (’USERNAME’) % Microso f t v e r s i on
% complete the prompt l i n e wi th the name
fpr intf (’%s \n \n ’ ,name)

% de f i n e the menu header

27

header=[name ’ admits that : ’] ;

% loop u n t i l we ge t the r i g h t answer
cho i c e =0;
while cho i c e ~= 4

% show a fake menu
disp (header)
disp (’ [1] Matlab i s h o r r i b l e . ’)
disp (’ [2] Matlab i s too much work . ’)
disp (’ [3] Matlab i s OK. ’)
disp (’ [4] Matlab i s g rea t ! ’)
disp (’ ’)
fpr intf (’ S e l e c t a number : ’)

% a l s o fake the users cho ice to be 4
cho i c e =4;
fpr intf (’%i \n \n ’ , cho i c e)

% change the header in case t ha t the answer i s wrong
header=’Wrong answer . Try again : ’ ;

end

% confirm tha t the user made the r i g h t cho ice
disp (’ I t i s good to see you agree with that ! ’)

P lease ente r your name : dommelen

dommelen admits that :
[1] Matlab i s h o r r i b l e .
[2] Matlab i s too much work .
[3] Matlab i s OK.
[4] Matlab i s g r ea t !

S e l e c t a number : 4

I t i s good to see you agree with that !

Doing a sum with a while loop
You can do with while loops whatever you can do with for loops. For example,
we can evaluate the Taylor series for exp(x) using a while loop as shown below.
It works just like the earlier for loop.

28

First we need to again set a desired value for x and a limit on what number of
terms we could possible sum in a reasonable time.

% the x va lue at which we want the Taylor s e r i e s
x=1

% the maximum number o f terms we would ever want to sum
nMax=100000

x = 1
nMax = 100000

Next put the following code in a script test16.m and run it. (Save test14.m
as test16.m and then modify that.)

% i n i t i a l i z e the sum to term t_0 = 1
n=0;
t_n=1;
t o t a l=t_n ;

% make sure t ha t summing does not s top immediate ly
totalChange=1;

% in a wh i l e loop , add terms as long as the sum changes
while totalChange ~= 0

% stop i f i t t a k e s too many terms
i f n >= nMax

break
end
% each time through , inc rea se the n va lue by one
n=n+1;
% compute term t_n from the prev ious va lue
t_n=t_n∗x/n ;
% see whether the term can s t i l l change the sum
totalChange=(t o t a l+t_n)−t o t a l ;
% add term t_n to the sum
t o t a l=t o t a l+t_n ;

end
i f totalChange==0

fpr intf (’ Converged a f t e r %i terms . \ n ’ ,n)
else

fprintf (’ ∗∗∗ Not converged a f t e r %i terms ! \ n ’ ,n)
end

% pr in t out the ob ta ined va lue
t o t a l

29

% see how b i g the error r e a l l y i s
t o t a lE r r o r=to ta l−exp(x)

Converged a f t e r 18 terms .
t o t a l = 2.7183
t o t a lE r r o r = 4.4409 e−16

Clearly, this is uglier than using the for loop. For example, the above code is
longer and messier than with the for loop. And it still adds the final tn to the
sum even though it cannot change the sum.

Unless you have a good reason, avoid while loops.

30

	LESSON SUMMARY
	Key areas of the online book
	FOR LOOPS
	A very simple example loop
	Examine exactly what Matlab does
	Handle repetitive operations easily
	Forming matrices
	Another example matrix, now requiring a nested loop
	Doing sums with a known limit
	Summing a Taylor series
	A better way to do the Taylor series
	SAVE YOUR WORKSPACE
	IF CONSTRUCTS
	A couple of examples of simple if statements
	An example of a compound if statement
	Relational operators
	Logical operators
	Checking condition numbers
	Doing infinite sums to a given accuracy
	Warning!!!
	Taylor series done better
	Additional remark
	WHILE LOOPS
	Getting input from a user using while
	Doing a sum with a while loop

