
5 LINEAR ALGEBRA
Contents

LESSON SUMMARY 1

Key areas of the online book 4

SOLVING LINEAR SYSTEMS OF EQUATIONS 5

The example problem that we want to solve 5

Cleaning up the equations 5

The coefficient matrix and right hand side vector 6

Check whether the system is solvable 7

Solve the system 9

Check whether the solution will be accurate enough 9

An unsolvable example 10

MATRIX MANIPULATIONS 12

Transposes 13

Matrix multiplication 14

Dot products 18

Special matrices 20

Parts of matrices 26

EIGENVALUES AND EIGENVECTORS 28

A simple example 29

About symmetric matrices 31

ADDITIONAL REMARKS 32

1

% make sure the workspace i s c l e a r
i f ~exist (’___code___ ’ , ’ var ’) ; clear ; end
% reduce need l e s s wh i te space
format compact
% reduce i r r i t a t i o n s (pausing and b u f f e r i n g)
more o f f
% s t a r t a d iary (in the a c t ua l l e c t u r e)
%diary l ec tureN . t x t

% Te l l the s t uden t s to save t h e i r work space b e f o r e
% l e a v i n g : save l ec tureN

LESSON SUMMARY
There are three main parts to this lesson.

The first main part is the solution of a linear system of equations for a set
of unknowns. The number of equations must equal the number of unknowns.
To solve a given linear system of equations with Matlab, perform the following
steps:

1. First clean up the system of equations as needed. The terms of the form
of a coefficient times an unknown should be in the left hand sides, with
the unknowns ordered and vertically lined up. The terms without any
unknowns should be in the right hand sides.

2. Put the coefficients of the unknowns in the left hand sides of the equations
in a two-dimensional Matlab array, i.e. a table. This 2D array is called
the "coefficient matrix". It will be denoted by A in this summary, or A
in Matlab. In terms of Matlab array row and column numbers, for the
component A(rowNo,colNo) of A, the row number rowNo should equal the
equation number and the column number colNo should equal the unknown
number.

Put the right hand sides of the equations in a one-dimensional Matlab
column array, i.e. a column of numbers. This 1D column array is called
the "right-hand-side vector". It will be denoted by ~b in this summary, or b
in Matlab. In terms of Matlab row numbers, for the component b(rowNo)
of b, the row number rowNo should equal the equation number.

3. Before trying to solve the system, you should first check that the system
has a reasonable solution in the first place. Not all systems do. To check,
evaluate the "condition number" of matrix A. You can get this number in
Matlab as cond(A). The CliffsNotes version is now that if the condition

2

number turns out to be comparable to 1016 or even larger, the solution to
the system found by Matlab will be crap. It is then unjustified to proceed
with solving the system.

4. If the condition number is nowhere as big as 1016, you can meaningfully
solve the system for the unknowns using Matlab. Matlab will put the
values of the unknowns in a one-dimensional column vector, called the
"solution vector". It will be denoted by ~x here, or x in Matlab. Matlab
allows you to find this vector using "left division", as in x=A\b. The values
of the unknowns in x should be reasonably accurate assuming that you
gave Matlab the correct equations to solve. So then you are done.

5. But suppose that some constants in your system of equations were, say,
measured rather than exact. Then these will have errors and that will
cause errors in the solution. You should then examine whether these errors
might be serious. To do so, you will first need to ballpark the maximum
relative error in the equations you gave to Matlab. Then multiply that
maximum relative error in the equations by the condition number to get
the maximum possible relative error in the solution. Multiply by 100 to
get this error in percent, and then decide whether you can live with that
kind of error. If not, investigate.

The second main part of this lesson is to learn some basic terms and manipula-
tions in linear algebra. In particular:

• You should know that if you put a quote on an matrix in Matlab, it
"transposes" the matrix, i.e. it turns rows into columns and vice-versa.
(Actually, if the matrix is complex, the quote also swaps the sign of

√
−1,

but we will only look at real matrices.)

• You should know that in linear algebra vectors are considered to be a
special form of matrices in which either the number of rows is 1 (a row
vector) or the number of columns is 1 (a column vector).

• You should know that multiplying matrices in linear algebra is always
"row-column"; it always takes dot products between row and column vec-
tors. In those terms, the system of equations discussed earlier can be
written in the form A~x = ~b. Here the matrix multiplication A~x takes dot
products between the rows in matrix A and the column vector ~x.

You get Matlab to do matrix multiplication (as opposed to elementwise
multiplication) by not putting a point before the ∗: A∗x instead of A.∗x.
The same for ^ and /. (The "right division" in the Matlab assignment
statement x=b/A makes x the solution to the equation x∗A=b, or ~xA = ~b).

You should also know that matrix multiplication is not commutative: A∗B
is normally not the same as B∗A.

3

• You should still know from physics that the dot product of a vector with
itself gives the square length of the vector. And you should know that if
the dot product of two different vectors is zero, then these two vectors are
orthogonal to each other.

• You should also know that Matlab calls the length of a vector the "norm"
of the vector. This idiocy allows Matlab to use the term "length" for
something else that is completely useless.

• You should know that a "square" matrix has the same number of rows as
columns.

• You should know that the "main diagonal" of a matrix consists of the
elements for which the row number equals the column number. It starts
at the top-left corner and goes down to (for a square matrix) the right-
bottom corner.

• You should know how various special matrices look and what they do:
zero matrices, unit matrices, matrices consisting of ones, and symmetric
matrices.

• You should know how to take parts out of matrices, and how to delete
parts of matrices.

• You should NOT know what a determinant is or what an inverse matrix
is. These concepts are far worse than useless in the numerical work that
you can do yourself. Forget whatever you know about them right now.
Except remember one thing: if you are using a determinant or an inverse
matrix, you are doing it wrong.

The third and final main part of this lesson is about eigenvalues and eigenvectors.
Here we are interested in finding solutions to a set of equations of the form

A~e = λ~e

or in Matlab terms A∗e==lambda∗e. Here A is again a matrix, and ~e is again
a vector of unknowns. The big difference from a normal system of equations is
that the right hand side is not a given vector but some unknown multiple λ, or
lambda in Matlab, times the vector of unknowns. For any solution to the above
equation in which ~e is not completely zero (which would be trivial), the number
λ is called the "eigenvalue" and vector ~e the eigenvector.

Eigenvectors are not unique; if a vector ~e satisfies the eigenvalue problem above,
then, say, so does 2~e. Just substitute it in and divide out the 2. However, if n is
the number of unknowns (which is also the number of equations), then normally
it is possible to find exactly n fundamentally different eigenvectors ~e1, ~e2, . . . , ~en

with corresponding eigenvalues λ1, λ2, . . . , λn. (In special cases there may be
less than n different eigenvectors, but never more than n.)

4

There is no time to go into the details of eigenvalue problems in this lesson but
there are some things you should be able to do:

1. Given an eigenvalue problem, you should be able to find the matrix A
(which is just like for the linear system of equations earlier), as well as
identify what is the eigenvalue λ in terms of the variables in the given
problem.

2. Then you should be able to find an array lambdaVals with the eigenvalues
of the matrix in it using an lambdaVals = eig(A) type assignment state-
ment. You should also be able to find both a matrix E, or E in Matlab,
with the eigenvectors in it and a matrix Λ, or Lambda in Matlab, with the
eigenvalues in it (on the main diagonal), using an [E Lambda] = eig(A)
type assignment statement.

3. You should be able to take the individual eigenvectors and eigenvalues out
of these matrices.

4. You should be able to check if matrix A is symmetric. And you should
know that if it is, the eigenvectors found by Matlab will be of length one
and mutually orthogonal. (That is much like the unit vectors ı̂, ̂, and k̂ of
a Cartesian coordinate system are of length one and mutually orthogonal.)

5. You should know how to check the length and the mutual orthogonality
of the eigenvectors using the norm and dot functions, as well as by using
direct matrix multiplication.

Key areas of the online book
Before the first lecture, in the online book do:

• 8.1 Dimensional properties of arrays: do PA 8.1.1. I doubt you will need
the examples and figures.

• 19.1 Vectors: skip the stuff after PA 19.1.5.

• 19.2 Matrices: skip the stuff from the "Special Square Matrices" subsection
onwards.

• 19.7 Linear systems: all.

• 19.8 Square matrices - Solving Ax = b: all.

Before the second lecture, in the online book do:

• 5.1 1D element-wise arithmetic operators: all except the final CA 5.1.3.
Warning: before doing this horribly written section, first refresh your
memory about arrays at the end of lesson1.

5

• 6.5 Summation function: skip CA.

• 7.3 Concatenation: all.

• 7.4 Multi-element 2D array indexing: skip the stuff after PA 7.4.3.

• 7.5 Indexing using a single colon: do PA 7.5.1.

• 8.2 Elementary 2D arrays: do PA 8.2.1-2. I doubt you will need the
examples and figures.

• 19.3: Matrix transpose: do PA 19.3.1 all and PA 19.3.2 question 1 only.

• 19.4: Matrix calculations: Skip PA 19.4.10-end.

Note that while the online book has a section 20.11 on eigenvalues and eigen-
vectors, you will find it is far too mathematical for you to understand. All you
will need to know is that eigenvalues and eigenvectors exist, what they are, and
how Matlab function eig can find them for you.

SOLVING LINEAR SYSTEMS OF EQUATIONS
In the next subsections, we will solve a system of 3 equations in 3 unknowns.
That is just a small example of much larger systems of maybe billions of equa-
tions in billions of unknowns used to, say, solve flow fields by modern engineers.
But whether the system is small or large, the number of equations should be
the same as the number of unknowns.

The example problem that we want to solve
As an example, we want to solve the following system of three equations

x1 = 3− 2x2 − 3x3 5x2 + 6x3 − 2 = 0 7x1 + 8x2 + 9x3 = 9

for the three unknowns x1, x2, and x3.

Cleaning up the equations
The first step is to clean up the system. Move all the terms that take the form of
a constant coefficient times an unknown to the left hand sides of the equations.
Move the remaining terms, that do not involve any unknown, to the right hand
sides of the equations.

Also order the unknowns and line up the terms vertically so that the same
unknowns in different equations are in the same column.

Also x1 is the same as 1x1 and no x1 is the same as 0x1. So you get:
1x1 + 2x2 + 3x3 = 3
0x1 + 5x2 + 6x3 = 2
7x1 + 8x2 + 9x3 = 9

6

for the cleaned up system.

The coefficient matrix and right hand side vector
The constants in the left hand sides of the equations, the coefficients of the
unknowns, form a "coefficient matrix" (table of numbers), call it A. Similarly
the right hand sides of the equations form a "right hand side (column) vector",
call it ~b:

A =

 1 2 3
0 5 6
7 8 9

 ~b =

 3
2
9


Note that the coefficients of unknown 1 all go into the first column of the matrix,
those of unknown 2 in the second column, etcetera.

Also remember that it is customary in linear algebra to use capitalization for
the names of matrices and lowercase for vectors.

In Matlab, a "matrix" is just a different name for a two-dimensional array (num-
bers arranged in rows and columns). And in Matlab a "column vector" is just
a different name for a one-dimensional column array (which Matlab treats as a
two-dimensional array with just a single column).

The most straightforward way to create such arrays is by writing out the num-
bers that they contain within square brackets. This is shown below for A:

% crea t e A
A = [1 2 3

0 5 6
7 8 9]

A =
1 2 3
0 5 6
7 8 9

Note that you can replace newlines inside the brackets with semicolons:

% crea t e A, a l t e r n a t i v e form
A=[1 2 3 ; 0 5 6 ; 7 8 9]

A =
1 2 3
0 5 6
7 8 9

7

However, that code is much less readable. You are responsible for making your
code easy to read for everybody.

Right-hand-side vector ~b can be created similarly:

% crea t e b
b = [3

2
9]

b =
3
2
9

I would say that the more concise:

% crea t e b , a l t e r n a t i v e form
b = [3 2 9] ’

b =
3
2
9

would also be OK and save paper.

The online book disagrees. It says people might not see the quote. I never
have that trouble. The book also says people might read "3 2" above as "32",
so you should separate using commas. I never have that trouble. I am more
likely to read "3,2" as "3.2". And "3, 2" as "3; 2" or vice-versa. I also think
A=[1,2,3;0,5,6;7,8,9] is a mess.

Check whether the system is solvable
To solve any system of equations properly in Matlab, first you must check that
Matlab will be able to find an accurate solution to the system in the first place.
That might not be the case. If not, you should not proceed; any solution you
would compute would be grossly misleading.

Now do not start thinking of the "determinant" of Precalculus. The only thing
that you cannot forget about determinants in numerical work is:

WARNING: If you are using a determinant, you are doing it wrong!

Ignore that the online book does it; that they are clueless does not mean you
should be too.

8

The correct way to check whether an accurate solution can be computed is to
check the so-called "condition number" of the matrix A. In Matlab you can get
the condition number using cond(A).

The condition number may not be too large. In Matlab it should be several
orders of magnitude less than 1016. If the condition number becomes comparable
to 1016 or even bigger, call it quits. The results will be crap.

Consider why this is the case. First of all,

DEFINITION: The condition number is the maximum factor that relative errors
can magnify in solving the system.

Normally in Matlab numbers are stored to only about 16 (decimal) significant
digits, starting from the first nonzero one. That corresponds to a typical relative
error of about 10−16. (More accurately, the maximum relative error due to
storing a normal number can be found as eps in Matlab.) The stored system to
solve is only accurate to this 10−16 relative error. To ballpark the corresponding
relative error in the solution, multiply by the condition number. So if the
condition number is 1016, then the relative error in the solution ballparks at
10−16 × 1016 = 1 or 100%. Clearly, if your solution has 100% error, it is no
good.

(Note that while technically the condition number only gives the maximum in-
crease in relative error, i.e. the worst-case scenario, in real life you are never
lucky. To imagine why, think of all the errors made due to storing the inter-
mediate numbers in the solution process. Condition numbers this large are also
not accurate themselves.)

Check the condition number:

% f ind the cond i t i on number
condA=cond(A)

condA = 37.939

Since cond(A) is much smaller than 10−16, Matlab should be able to find a very
accurate solution to the system.

Solve the system
Next, only if the system is accurately solvable according to the test above, solve
it.

Now do not start thinking of the "inverse matrix" of Precalculus. The only thing
you cannot forget about inverse matrices in numerical work is:

WARNING: If you are using an inverse matrix, you are doing it wrong!

9

The correct way to solve a generic system of equations in Matlab is using "left
division"

x = A \ b % l e f t d i v i s i o n : A \ b in s t ead o f b / A

This will put the computed values of the unknowns in the "solution (column)
vector x" (or ~x in mathematics).

% so l v e the system
x = A \ b

x =
1
−2
2

This should be the correct solution to the system of equations as given, to about
14 digits.

(Actually, the solution above is exact, but that has to do with everything being
an integer here.)

Check whether the solution will be accurate enough
Even if the condition number is not that large at all, like the condition number
38 above, there is another potential source of errors you must watch out for.
If the equations you give Matlab are not exact but have errors, then that will
introduce additional errors in the computed solution. These errors are very
likely to be a lot worse than the errors that Matlab itself introduces in the
numbers. For example, some of the constants in the equations you give Matlab
may be measured experimentally. There are very few known constants in nature
that are measured to 16 significant digits accuracy, the accuracy of numbers in
Matlab. Also when typing in numbers, you yourself may have entered them to
less than 16 significant digits accurate.

So, to do a good job, you should have some sort of ballpark in your mind for
how big the relative errors are in the equations that you give to Matlab. Then,
if these errors, when multiplied by the condition number, become a nontrivial
percentage, you should treat the obtained solution with caution. Maybe try
experimenting with different possible values of the constants that you give Mat-
lab, and see how the solution changes. (Note that in this case, it is not at all
uncommon that the actual error is much smaller than the worst-case scenario
estimated using the condition number.)

To explore these issues, let’s assume that the numbers in the equations, the data
given to Matlab, are not exact, but have errors of say 1%:

10

% the b a l l p a r k r e l a t i v e error in the data
dataRe le r r =0.01

dataRe le r r = 0.010000

Then the computed solution vector may have a relative error up to condA as
large:

% the corresponding maximum error in the so lu ton :
xRe le r r=dataRe le r r ∗condA

xReler r = 0.37939

While a 1% error might be acceptable for engineering applications, a 38% error
is probably not! Without checking the condition number, we would have had
no clue of this potential problem. Some experimenting with the numbers you
give Matlab is clearly in order.

One additional warning:

WARNING: Do not check a solution by substituting it into the equations and
seeing whether they are accurately satisfied.

Substituting the obtained solution back into the equations can show you whether
you solved the system correctly, but not whether your solution is accurate.
Typically, even very inaccurate solutions obtained from left division will satisfy
the equations quite accurately. You must use the condition number to say
anything meaningful about the accuracy of the solution.

An unsolvable example
Consider now the modified system of equations

1x1 + 2x2 + 3x3 = 3
4x1 + 5x2 + 6x3 = 2
7x1 + 8x2 + 9x3 = 9

The only change is the leading 4 instead of 0 in the second equation. But now
there is no solution to the system. It is said that the matrix is "singular". (If
the matrix is singular, there is either no solution at all, like here, or if there is
one, there are infinitely many different solutions. In the latter case, you still
would not know which of these infinitely many solutions is the one you want.)

We want to check that if we try to solve this singular system in Matlab using
proper procedures, we will correctly conclude that it cannot be done. In other
words, we want to check that we will not end up taking a nonsensical solution
seriously.

11

To form the new matrix, which we will call ABad in Matlab, we want to take
the old matrix A and just change the zero in row 2, column 1 into a 4. We can
do that with "indices". Always remember:

REMEMBER: For matrices, the proper order is row-column.

In particular, the element in row 2 and column 1 of ABad is ABad(2,1). The
numbers 2 and 1 are called the "indices" of the element ABad(2,1). Note that
the row number 2 goes before the column number 1.

Create ABad:

% copy A in to ABad
ABad=A;

% change the 0 element in row 2 and column 1 in to a 4 .
ABad(2 , 1)=4

ABad =
1 2 3
4 5 6
7 8 9

Now try to solve using proper procedures. First check the condition number:

% eva l ua t e the cond i t i on number
condABad=cond(ABad)

condABad = 6.0262 e+16
The above condition number is excessive. Matlab cannot solve this system even
if it is given the exact numbers in the equations. The 10−16 relative error in
storing numbers in Matlab prevents that:

% the r e l a t i v e error in the s o l u t i o n due to inaccuracy
xRelerrDueToMatlab=condABad∗eps

xRelerrDueToMatlab = 13.381
The 10−16 relative error in Matlab would mean a relative error in the solution
of about 1,300%!

Actually, large condition numbers are likely to be inaccurate, like here. The
true condition number in this case is infinite. There simply is no solution. The
correct relative error in any solution is infinite.

In any case, checking the condition number did show us that we cannot mean-
ingfully solve this system in Matlab. So we should stop here and not try to
solve it at all.

12

But suppose that we would not have checked the condition number. What would
have happened? We would have solved and found some supposed "solution"
(where there is none):

% r e s u l t o f s t u p i d l y " s o l v i n g " the equa t i ons :
xBad = ABad \ b

warning : matrix s i n gu l a r to machine p r e c i s i on , rcond =
2.20304 e−18

xBad =
0.50000
0.33333
0.16667

Nice numbers, but they are all wrong. Do not solve a singular system unless
told so!

Actually, I am somewhat surprised by the above numbers produced by Octave.
I would have expected a solution like that produced by Matlab instead:

xBadMatlab = [−3.6E16 7 .2E16 −3.6E16] ’

xBadMatlab =
−3.6000 e+16
7.2000 e+16
−3.6000 e+16

These numbers are, of course, all wrong too. But they are very large suggesting
an infinite solution, rather than a few nice numbers.

MATRIX MANIPULATIONS
For advanced applications in linear algebra you must know how to do certain
tasks. Some of this you should already have seen in MAC 1140.

Transposes
The "transpose" of a matrix A is in mathematics indicated by AT. The columns
in A becomes rows in AT and vice-versa:

DEFINITION: Transposing swaps rows and columns.

As we already saw earlier,

REMEMBER: To transpose in Matlab, append a quote.

(Actually, if the matrix is complex, the quote also swaps the sign of
√
−1, but

we will only look at real matrices here.)

13

% our good o ld vec t o r b
b
% i t s trandpose
bT=b ’

b =
3
2
9

bT =
3 2 9

The column vector became a row vector by the transpose.
Note that a second transpose always undoes the first; b” is the same as b:

% transpose o f bT i s b
bTT=bT’

bTT =
3
2
9

Transposing a matrix like A goes the same way:

% our good o ld matrix A
A
% i t s t ranspose
AT=A’
% the t ranspose o f i t s t ranspose
ATT=AT’

A =
1 2 3
0 5 6
7 8 9

AT =
1 0 7
2 5 8
3 6 9

ATT =
1 2 3
0 5 6
7 8 9

14

Matrix multiplication
Linear algebra has its own rules of multiplying matrices together. These rules
are different from the elementwise multiplications of arrays in Matlab that we
have seen so far. One key thing to remember:

REMEMBER: Matrix multiplication is always row-column.

More precisely, matrix multiplication takes dot products of the rows of the
first matrix with the columns of the second matrix. A dot product consists of
elementwise multiplication, followed by a summation of all the obtained products.
That summation results in a single final number, a "scalar". That is the reason
that the dot product is also often called the "scalar" product. It produces a
single number.

Note further that this applies to vectors as well as to matrices. Linear algebra
considers vectors to be just special cases of matrices. In particular a column
vector is just a matrix with a single column and a row vector is just a matrix
with a single row.

As an example, consider what we get if we multiply, in the matrix way, matrix
A of the earlier system of equations to the solution vector ~x:

A~x =

 1 2 3
0 5 6
7 8 9

  1
−2

2

 =

 1× 1 + 2× (−2) + 3× 2
0× 1 + 5× (−2) + 6× 2
7× 1 + 8× (−2) + 9× 2

 =

 3
2
9


Note that this involved three dot products, each between a row of A and the
column vector ~x, and that each dot product produced a single number (3, 2,
and 9 respectively).

To achieve matrix manipulation in Matlab, do not put a point before the ∗:

% mu l t i p l y A and x the matrix way
A_Star_x=A∗x

A_Star_x =
3
2
9

If by mistake you do put a point before the ∗, you do not, unfortunately, get
a message that you are doing it wrong. Instead of warning you, Matlab will
instead give you some weird set of numbers that you do not want. Indeed, the
Matlab interpretation of A.∗x is a prime example of what not to do in order to
promote readable, easily understandable code.

Note also that the result of the multiplication A~x is the right hand side vector
~b. Indeed, in terms of matrix multiplication, a linear system of equations always

15

takes the simple form A~x = ~b. That is why, in some sense, we want to divide ~b
by matrix A to get ~x.

Let’s test how accurately A∗x really equals b by taking differences:

% r e c a l l A, x , and b
show_A_x_b=[A x b]
% eva l ua t e the d i f f e r e n c e between A x and b
e r r o r s=A∗x−b
% eva l ua t e the maximum error
fpr intf (’Maximum e r r o r : %.1E ’ ,max(abs (A∗x−b)))

show_A_x_b =
1 2 3 1 3
0 5 6 −2 2
7 8 9 2 9

e r r o r s =
0
0
0

Maximum e r r o r : 0 . 0E+00

Doing the same for the singular matrix shows that the Octave solution is all
crap:

% r e c a l l ABad, xBad , and b
show_ABad_xBad_b=[ABad xBad b]
% eva l ua t e the d i f f e r e n c e between ABad xBad and b
e r r o r s=ABad∗xBad−b
% eva l ua t e the maximum error
fpr intf (’Maximum e r r o r : %.1E ’ ,max(abs (ABad∗xBad−b)))

show_ABad_xBad_b =
1.00000 2.00000 3.00000 0.50000 3.00000
4.00000 5.00000 6.00000 0.33333 2.00000
7.00000 8.00000 9.00000 0.16667 9.00000

e r r o r s =
−1.3333
2 .6667
−1.3333

Maximum e r r o r : 2 . 7E+00

For the Matlab solution, things are somewhat different:

% r e c a l l ABad, xBadMatlab , and b
show_ABad_xBadMatlab_b=[ABad xBadMatlab b]
% eva l ua t e the d i f f e r e n c e between ABad xBad and b

16

e r r o r s=ABad∗xBadMatlab−b
% eva l ua t e the maximum error
fpr intf (’Maximum e r r o r : %.1E ’ , . . .

max(abs (ABad∗xBadMatlab−b)))

show_ABad_xBadMatlab_b =
Columns 1 through 4 :

1 .0000 e+00 2.0000 e+00 3.0000 e+00 −3.6000 e+16
4.0000 e+00 5.0000 e+00 6.0000 e+00 7.2000 e+16
7.0000 e+00 8.0000 e+00 9.0000 e+00 −3.6000 e+16

Column 5 :
3 .0000 e+00
2.0000 e+00
9.0000 e+00

e r r o r s =
−3
−2
−9

Maximum e r r o r : 9 . 0E+00

Note that relative to the great size of xBadMatlab, the errors are actually very
small. The solution is still no good, but it does satisfy the equations relatively
accurately. The Octave one does not.

Next, since matrix multiplication dots rows of the first matrix with columns of
the second, the matrices are not interchangable, Indeed, normally AB is not at
all the same as BA. In other words,

REMEMBER: Matrix multiplication does not commute.

For example, ~xA is not at all the same as A~x. In fact ~xA does not even exist:
each row in column vector ~x has only a single component, but each column in A
has three components. So there is no way to take dot products between them.
This illustrates another important point:

REMEMBER: Rows and columns involved in matrix multiplication must have
the same number of components.

Matrices A and ABad can be multiplied together in either order, but the result
will not be the same:

% r e c a l l A and ABad
show_A_ABad=[A ABad]
% matrix product A ABad
A_Star_ABad=A∗ABad
% r e c a l l ABad and A
show_ABad_A=[ABad A]

17

% matrix product ABad A
ABad_Star_A=ABad∗A

show_A_ABad =
1 2 3 1 2 3
0 5 6 4 5 6
7 8 9 7 8 9

A_Star_ABad =
30 36 42
62 73 84

102 126 150
show_ABad_A =

1 2 3 1 2 3
4 5 6 0 5 6
7 8 9 7 8 9

ABad_Star_A =
22 36 42
46 81 96
70 126 150

Check yourself that, for example, the (2,3) component of A∗ABad is 0 ∗ 3 + 5 ∗
6 + 6 ∗ 9 = 84, but the (2,3) component of ABad∗A is 4 ∗ 3 + 5 ∗ 6 + 6 ∗ 9 = 96.

Note also that the elementwise multiplications A.∗ABad and ABad.∗A are possi-
ble and do produce the same result:

% r e c a l l A and ABad
show_A_ABad=[A ABad]
% elementwise product A ABad
A_PointStar_ABad=A.∗ABad
% elementwise product ABad A
ABad_PointStar_A=ABad.∗A

show_A_ABad =
1 2 3 1 2 3
0 5 6 4 5 6
7 8 9 7 8 9

A_PointStar_ABad =
1 4 9
0 25 36

49 64 81
ABad_PointStar_A =

1 4 9
0 25 36

49 64 81

18

However, the result is completely different from the matrix product. For exam-
ple, while the (2,3) component of matrix product A∗ABad was 0∗3+5∗6+6∗9 =
84, the (2,3) component of elementwise product A.∗ABad (as well as of ABad.∗A)
is 6 ∗ 6 = 36.

Dot products
Matrix multiplication always takes dot products between the rows of the first
matrix and the columns of the second matrix. Therefore, if you want to obtain
the dot product between two vectors using matrix multiplication, you must
make sure that the first vector is a row vector and the second vector a column
vector.

REMEMBER: In matrix multiplication terms, any dot product between vectors
must be row-column.

For example, you cannot do a matrix multiplication between x and b. Matlab
will refuse because the single element rows of x cannot be dotted with the three
element column vector b. But since the transpose x’ of x is a row vector, you
can multiply x’ by b to get the dot product of the two vectors:

% the dot product o f x and b as a matrix product
x_Dot_b=x ’∗b
% the dot product o f b and x as a matrix product
b_Dot_x=b ’∗ x

x_Dot_b = 17
b_Dot_x = 17

Note that the dot product of b and x is the same as that of x and b. (However,
this is no longer completely true if the vectors are complex.)

Another way to find the dot product is to use the Matlab dot function:

% the dot product found us ing the Matlab " dot " f unc t i on
x_Dot_b=dot (x , b)

x_Dot_b = 17

From physics, you should still remember that if two vectors are orthogonal, then
their dot product is zero. Since the dot product of x and b is not zero, they are
not orthogonal to each other.

From physics, you should also still remember that the dot product of a vector
with itself gives the square length of the vector. To get the length, take a square
root. For example, the length of vector x is

19

% r e c a l l x
x
% f ind the l e n g t h o f x us ing matrix mu l t i p l i c a t i o n
xLength=sqrt (x ’∗ x)

x =
1
−2
2

xLength = 3

Indeed, |~x| =
√

12 + (−2)2 + 22 = 3 according to the Pythagorean theorem,
which agrees with the value above.

You might think you should be able to get the length of a vector also with the
length function. But these idiots at Matlab already use the name length for
something else that is completely useless. As a result of this stupidity, to get
the length of a vector, you will have to use the norm function:

% f ind the l e n g t h o f x us ing the "norm" func t i on
xLength=norm(x)

xLength = 3

There are a couple of other useful functions for arrays. If you want the total
number of components (elements) in a vector or array, use the numel function:

% number o f e lements in x and A
xNumel=numel (x)
ANumel=numel (A)

xNumel = 3
ANumel = 9

Note that it is just coincidence that both the length and number of components
of the current vector x are 3. They are completely different things.

If you want the number of rows and columns, use the size function:

% rows and columns in x and A
x
xS ize=s ize (x)
A
ASize=s ize (A)

20

x =
1
−2
2

xS ize =
3 1

A =
1 2 3
0 5 6
7 8 9

ASize =
3 3

So, what is this useless length function that Matlab defines? Matlab defines
length(A) to be max(size(A)), a normally useless quantity. You should never
use the Matlab length function; that is confusing programming because the
name "length" suggests a length to normal (nonMatlab) people. If you can find
a use for max(size(A)), (and I cannot think of one), write it as max(size(A)).

Special matrices
A zero matrix is the matrix equivalent of the number zero. Adding or subtract-
ing a zero matrix A to a matrix does not change the matrix. Multiplying by a
zero matrix produces zero. A zero matrix contains all zeros. The symbol for a
zero matrix is typically Z.

To test this by example, let’s first create a bigger matrix than A for testing. One
way to do so is put both A and its transpose A’ in a matrix:

% crea t e a b i g g e r matrix from A and AT
Big=[A A’]
% i t s number o f rows and columns
BigS ize=s ize (Big)

Big =
1 2 3 1 0 7
0 5 6 2 5 8
7 8 9 3 6 9

BigS ize =
3 6

Next let’s show that if we add or subtract a zero matrix to Big, it does not
change Big. Note that:

REMEMBER: Added or substracted matrices must have the same size.

In Matlab you create a zero matrix using the zeros function.

21

% crea ted the needed 3 row , 6 column zero matrix
Z=zeros (3 , 6)
% a b e t t e r way to do t h i s (s t i l l works i f we change Big)
Z=zeros (s ize (Big))

% r e c a l l Big
Big

% add or s u b t r a c t the zero matrix
Big_Plus_Z=Big+Z
Big_Minus_Z=Big−Z
Z_Plus_Big=Z+Big

Z =
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

Z =
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

Big =
1 2 3 1 0 7
0 5 6 2 5 8
7 8 9 3 6 9

Big_Plus_Z =
1 2 3 1 0 7
0 5 6 2 5 8
7 8 9 3 6 9

Big_Minus_Z =
1 2 3 1 0 7
0 5 6 2 5 8
7 8 9 3 6 9

Z_Plus_Big =
1 2 3 1 0 7
0 5 6 2 5 8
7 8 9 3 6 9

Next let’s show that if you postmultiply Big by a zero matrix Z, (as in Big∗Z),
you get zero.

Do recall from before that to do the multiplication, the number of components of
the rows of Big must equal the number of components of the columns of Z. The
number of components of the rows of Big equals 6, its number of columns, or
more generally, BigSize(2). Similarly, the number of components of the columns

22

of Z is its numbers of rows, the first component of size(Z). The number of
columns in Z can be anything. For example we can take the number of columns
equal to 1, making Z a column vector:

% crea t e a zero column vec to r o f 6 rows
Z=zeros (6 , 1)
% the b e t t e r way to do t h i s
Z=zeros (B igS ize (2) ,1)
% pos tmu l t i p l y Big by t h i s zero matrix
Big_Star_Z=Big∗Z

Z =
0
0
0
0
0
0

Z =
0
0
0
0
0
0

Big_Star_Z =
0
0
0

Another posibility is to the take number of columns in Z equal to its number of
rows, creating what is called a "square" zero matrix.

% crea t e a square zero matrix o f the r i g h t s i z e
Z=zeros (6 , 6)
% the b e t t e r way to do t h i s
Z=zeros (B igS ize (2) , B igS ize (2))
% pos tmu l t i p l y Big by t h i s zero matrix
Big_Star_Z=Big∗Z

Z =
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

23

0 0 0 0 0 0
Z =

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

Big_Star_Z =
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

In either case, the result of the multiplication is a zero matrix, but its size is
different.

If we want to premultiply Big by Z, as in Z∗Big, the number of columns of Z
must equal the number of rows in Big, 3, or more generally BigSize(1). Let’s
first try premultiplying by a 3 column row vector:

% crea t e a zero row vec to r o f the r i g h t s i z e
Z=zeros (1 , 3)
% the b e t t e r way to do t h i s
Z=zeros (1 , B igS ize (1))
% premu l t i p l y Big by t h i s zero matrix
Z_Star_Big=Z∗Big

Z =
0 0 0

Z =
0 0 0

Z_Star_Big =
0 0 0 0 0 0

Next let’s try premultiplying by a 3 by 3 square zero matrix:

% crea t e a square zero matrix o f the r i g h t s i z e
Z=zeros (3 , 3)
% the b e t t e r way to do t h i s
Z=zeros (B igS ize (1) , B igS ize (1))
% premu l t i p l y Big by t h i s zero matrix
Z_Star_Big=Z∗Big

Z =
0 0 0
0 0 0
0 0 0

24

Z =
0 0 0
0 0 0
0 0 0

Z_Star_Big =
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

A unit matrix (or identity matrix) is the matrix equivalent of the number 1;
multiplying by a unit matrix does not change anything.

In analogy to the zero matrix, you might think that a unit matrix contains all
ones, which would be given by the Matlab ones function.

But actually, a unit matrix is square (the number of rows equals the number of
columns) and only contains ones on the "main diagonal" that goes from top left
corner to bottom right corner. The rest of the unit matrix is zero. The symbol
for a unit matrix is typically "I". In Matlab you can create a unit matrix with
the eye function (somebody’s joke).

To be able to postmultiply Big by a unit matrix I, the number of rows and
columns in I must equal the number of columns BigSize(2) of Big, so

% crea t e a un i t matrix o f the r i g h t s i z e
I=eye (6)
% the b e t t e r way to do t h i s
I=eye (B igS ize (2))
% r e c a l l Big
Big
% pos tmu l t i p l y Big by t h i s un i t matrix
Big_Star_I=Big∗ I

I =
Diagonal Matrix

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

I =
Diagonal Matrix

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0

25

0 0 0 0 1 0
0 0 0 0 0 1

Big =
1 2 3 1 0 7
0 5 6 2 5 8
7 8 9 3 6 9

Big_Star_I =
1 2 3 1 0 7
0 5 6 2 5 8
7 8 9 3 6 9

To be able to premultiply Big by a unit matrix I, the number of rows and
columns in I must equal the number of rows BigSize(1) of Big, so

% crea t e a un i t matrix o f the r i g h t s i z e
I=eye (3)
% the b e t t e r way to do t h i s
I=eye (B igS ize (1))
% r e c a l l Big
Big
% premu l t i p l y Big by t h i s un i t matrix
I_Star_Big=I ∗Big

I =
Diagonal Matrix

1 0 0
0 1 0
0 0 1

I =
Diagonal Matrix

1 0 0
0 1 0
0 0 1

Big =
1 2 3 1 0 7
0 5 6 2 5 8
7 8 9 3 6 9

I_Star_Big =
1 2 3 1 0 7
0 5 6 2 5 8
7 8 9 3 6 9

A symmetric matrix is the same as its transpose. So A is symmetric iff AT = A.
Symmetric matrices occur in many highly important engineering applications.

% an example symmetric matrix
S = [3 4 5

26

4 6 7
5 7 8]

% show tha t the t ranspose i s the same
ST=S ’

S =
3 4 5
4 6 7
5 7 8

ST =
3 4 5
4 6 7
5 7 8

Parts of matrices
When we created singular matrix ABad from A, we already saw that you can
address a single number in a matrix using (ROW,COLUMN). For example, the
element in row 2 and column 1 of ABad was ABad(2,1).

You can also address multiple elements in a matrix by using START:END con-
structs. Below are some examples. For example, consider how to take (parts
of) rows out of a matrix:

% r e c a l l the example b i g matrix
Big
% take out par t o f row 2 (note row−column !)
row2part=Big (2 , 2 : 4)
% take out the en t i r e row 2 (a bare : means " a l l ")
row2a l l=Big (2 , :)
% a bad way to do t h i s , as i t i s l e s s r eadab l e
row2a l l=Big (2 , 1 :end)
% a worse way to do t h i s , as i t i s l e s s unders tandab l e
row2a l l=Big (2 , 1 : 6)

Big =
1 2 3 1 0 7
0 5 6 2 5 8
7 8 9 3 6 9

row2part =
5 6 2

row2a l l =
0 5 6 2 5 8

row2a l l =
0 5 6 2 5 8

27

row2a l l =
0 5 6 2 5 8

A far more common thing is to have to take an entire column out of a matrix.
This goes similarly:

% r e c a l l the example b i g matrix
Big
% take out column 4 (note row−column !)
c o l 4 a l l=Big (: , 4)

Big =
1 2 3 1 0 7
0 5 6 2 5 8
7 8 9 3 6 9

c o l 4 a l l =
1
2
3

You may also have to take a set of columns out:

% r e c a l l the example b i g matrix
Big
% take out columns 3 , 4 , and 5 (note row−column !)
c o l 3 4 5 a l l=Big (: , 3 : 5)
% take out columns 3 and 5
c o l 3 5 a l l=Big (: , [3 5])

Big =
1 2 3 1 0 7
0 5 6 2 5 8
7 8 9 3 6 9

c o l 3 4 5 a l l =
3 1 0
6 2 5
9 3 6

c o l 3 5 a l l =
3 0
6 5
9 6

Conceivably, you might have to delete some columns from a matrix. This is
done by setting the part of the matrix to delete equal to the "nil" matrix [].
For example, to delete rows 3 and 5 from Big:

% copy Big to BigReduced

28

BigReduced=Big
% now d e l e t e i t s columns 3 and 5
BigReduced (: , [3 5]) =[]

BigReduced =
1 2 3 1 0 7
0 5 6 2 5 8
7 8 9 3 6 9

BigReduced =
1 2 1 7
0 5 2 8
7 8 3 9

EIGENVALUES AND EIGENVECTORS
Eigenvalues and eigenvectors are crucial to many engineering application. Un-
fortunately, here we can only give a brief first look at them. First their definition:
A vector ~e is an eigenvector of a given square matrix A if ~e is nonzero and:

A~e = λ~e

where λ (or lambda in Matlab) is a number called the eigenvalue.

Finding eigenvalues and eigenvectors is important for very many engineering
problems. For example, the "principal moments of inertia" of a rotating body
are eigenvalues. The corresponding eigenvectors are the unit vectors of the
"principal coordinate system". Also, the eigenvalues of "stiffness matrices" of
vibrating systems give the frequencies of vibration, and the eigenvectors give the
mode shapes. Eigenvalues and eigenvectors are also critical in beam bending,
in beam buckling, in the stresses and strains in materials under loads, and so
on.

Here we want to explore how, given a matrix A, you can find its eigenvalues and
eigenvectors using Matlab.

See what is available to do so:

% the next i s commented out ; i t must be run i n t e r a c t i v e l y
%l o o k f o r e i g enva l u e

A simple example
As an example we will use Matlab function eig to find the eigenvalues and
eigenvectors of a matrix of interest in fluid flows like lubrication.

29

% The (g iven) example matrix
C=1
S = [0 C 0

C 0 0
0 0 0]

% ge t the th r ee e i g enva l u e s as a vec t o r
lambdaVals=eig (S)

C = 1
S =

0 1 0
1 0 0
0 0 0

lambdaVals =
−1
0
1

To get readable code, you will probably want to take the individual eigenvalues
out of the vector. That can be done as:

% ge t the i n d i v i d u a l t h r e e e i g enva l u e s
lambda1=lambdaVals (1)
lambda2=lambdaVals (2)
lambda3=lambdaVals (3)

lambda1 = −1
lambda2 = 0
lambda3 = 1

If you also want the eigenvectors, the format is somewhat different:

% ge t both the t h r ee e i g enva l u e s and t h e i r e i g en v e c t o r s
[E Lambda]=eig (S)

E =
−0.70711 0.00000 0.70711
0.70711 0.00000 0.70711
0.00000 1.00000 0.00000

Lambda =
Diagonal Matrix
−1 0 0
0 0 0
0 0 1

30

This gives the three eigenvalues on the main diagonal of a matrix Lambda and
the three eigenvectors as the columns of a matrix E.

To get readable code, you will probably want to take the individual eigenvalues
and eigenvectors out of these matrices. That can be done as:

% ge t the i n d i v i d u a l t h r e e e i g enva l u e s
lambda1=Lambda(1 , 1)
lambda2=Lambda(2 , 2)
lambda3=Lambda(3 , 3)
% ge t the i n d i v i d u a l t h r e e e i g en v e c t o r s
e1=E(: , 1)
e2=E(: , 2)
e3=E(: , 3)

lambda1 = −1
lambda2 = 0
lambda3 = 1
e1 =
−0.70711
0.70711
0.00000

e2 =
0
0
1

e3 =
0.70711
0.70711
0.00000

Let’s check that Matlab found the right vectors. If they are OK, for each, the
left hand side in S ~E = λ~e must equal the right hand side:

% check the f i r s t e i g enva l u e and i t s e i g env e c t o r
LHS1_RHS1_difference=[S∗ e1 lambda1∗ e1 S∗e1−lambda1∗ e1]
% check the second e i g enva l u e and i t s e i g env e c t o r
LHS2_RHS2_difference=[S∗ e2 lambda2∗ e2 S∗e2−lambda2∗ e2]
% check the t h i r d e i g enva l u e and i t s e i g env e c t o r
LHS3_RHS3_difference=[S∗ e3 lambda3∗ e3 S∗e3−lambda3∗ e3]

LHS1_RHS1_difference =
0.70711 0.70711 0.00000
−0.70711 −0.70711 0.00000
0.00000 −0.00000 0.00000

LHS2_RHS2_difference =

31

0 0 0
0 0 0
0 0 0

LHS3_RHS3_difference =
0.70711 0.70711 0.00000
0.70711 0.70711 0.00000
0.00000 0.00000 0.00000

About symmetric matrices
As already noted, a matrix A is symmetric iff it equals its transpose; AT = A.
There are some special rules for the eigenvalues and eigenvectors of symmetric
matrices:

1. The eigenvalues are always real, not complex.

2. The eigenvectors can be taken to be mutually orthogonal unit vectors.
They are the unit vectors along the "principal axes" of the matrix.

Since our example matrix S was symmetric, let’s check whether Matlab found
the right eigenvalues and eigenvectors.

The eigenvalues, -1, 0, and 1, are indeed real, OK.

As we saw before, to check that the length of each eigenvector is 1, we can either
use the Matlab norm function or matrix multiplication. Here we will use matrix
multiplication:

% the l en g t h o f e i g env e c t o r e1 must be one
e1Length=sqrt (e1 ’∗ e1)
% the l en g t h o f e i g env e c t o r e2 must be one
e2Length=sqrt (e2 ’∗ e2)
% the l en g t h o f e i g env e c t o r e3 must be one
e3Length=sqrt (e3 ’∗ e3)

e1Length = 1
e2Length = 1
e3Length = 1

Note that we did not really need the square roots; if the square length is 1, then
so is the length.

As we saw before, to check whether two vectors are orthogonal, we must check
whether their dot product is zero. The dot product can be found with the
Matlab dot function or by matrix multiplication. Here we will use matrix
multiplication:

32

% e1 and e2 are or thogona l i f t h e i r dot product i s zero
e1_Dot_e2=e1 ’∗ e2
% e2 and e3 are or thogona l i f t h e i r dot product i s zero
e2_Dot_e3=e2 ’∗ e3
% e3 and e1 are or thogona l i f t h e i r dot product i s zero
e3_Dot_e1=e3 ’∗ e1

e1_Dot_e2 = 0
e2_Dot_e3 = 0
e3_Dot_e1 = 0

ADDITIONAL REMARKS
In left division, Matlab will examine the matrix and if the matrix has special
properties that warrant a special solution procedure, select it. To save Matlab
time or force it to use a given procedure, you can use linsolve, which allows
you to specify options.

Use of linsolve also allows you to get a (I presume approximate and, for the
experts, L1) condition number. That may be of interest for very big systems,
as finding cond(A) may take nontrivially more effort than actually solving the
system. But I cannot find info in the Matlab documentation on the precise
condition number returned.

If the matrix is "sparse", i.e. it is a big matrix whose elements are almost all
zeros, you should create it as a Matlab sparse matrix. This avoids wasting
storage to store all these zeros, and wasting computational time to do trivial
operations on all these zeros. You can create Matlab sparse matrices with the
sparse function. If the matrix is a band matrix, i.e. the nonzero elements are
along 45 degree downward diagonals near the main diagonal, function spdiags
may be a more suitable way to create the sparse matrix.

If not using Matlab, the normal efficient way to solve equations will likely be re-
ferred to as "LU decomposition". If you have a band matrix, look for a dedicated
LU-decomposition subroutine for band matrices.

33

	LESSON SUMMARY
	Key areas of the online book
	SOLVING LINEAR SYSTEMS OF EQUATIONS
	The example problem that we want to solve
	Cleaning up the equations
	The coefficient matrix and right hand side vector
	Check whether the system is solvable
	Solve the system
	Check whether the solution will be accurate enough
	An unsolvable example
	MATRIX MANIPULATIONS
	Transposes
	Matrix multiplication
	Dot products
	Special matrices
	Parts of matrices
	EIGENVALUES AND EIGENVECTORS
	A simple example
	About symmetric matrices
	ADDITIONAL REMARKS

