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LESSON SUMMARY
• Ordinary Differential Equations (ODE) are equations including deriva-
tives with respect to an independent variable. Usually, but by no means
always, the independent variable is time. Newton’s second law and related
equations involve time derivatives and are ODE. So are the equations of
evolving chemical reactions and electrical circuits. Mechanical, chemical,
and electrical engineering students take note.

• To keep it simple, in this lesson we assume that the independent variable
is time. If it is not, you can still think of it as time-like.

• Typically, there is more than one ODE for more than one unknown. The
number of ODE must match the number of unknowns.

• To solve the ODE in Matlab, you must first create a function that, given
values for the independent variable and the unknowns, outputs the deriva-
tives of the unknowns. You should use the ODE inside this function to
find these derivatives. More specifics on the needed function: The input
values of all the unknowns should be assumed to be stored together in a
single input column array. All the found derivatives must be put together
in a single column array that is the returned output of the function.

• To solve the ODE, you should also be given the values of the unknowns at
an initial time. These initial values of the unknowns are called "initial con-
ditions" for obvious reasons. (Warning: do not use the initial conditions
in your function above.)

• With your function and the initial conditions, you can solve the ODE
using Matlab function ode45:

1. The first input argument of ode45 must be your function giving the
derivatives of the unknowns. Or, if you ended up creating a function that
has more than the two input arguments ode45 wants, the first argument
should be an anonymous function with the required two arguments, and
based on your function with more of them. Either way, the function should
be preceded by an @.

2. The second input argument of ode45 must an array of times from the
initial time to the final time that you want to have computed.

3. The third input argument must be the initial values of the unknowns,
put in a column array.

• If you specified only two times in the second input argument, start and
end, function ode45 will return the values of the unknowns at times of
its own choice from start to end. Otherwise it will return the unknowns
at the times you specified. In either case, function ode45 returns the
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computed times as a column array and the corresponding unknowns as a
2D array. In the 2D array, the first column contains the values of the first
unknown, the second column the values of the second unknown, etcetera.
You will typically need to take the separate unknowns out of the array.
Use (:,UNKNOWNNUMBER) indices to do so.

Key areas of the online book
Before the lecture, in the online book do:

• 4.7 More indexing: PA 4.7.1 only.

• 4.11 Column arrays: all.

• 7.1 2D arrays - Introduction: skip the stuff after PA 7.1.4.

The online book has nothing on ordinary differential equations. If you want
more info, look at "Getting Started with Matlab" by Rudra Patrap. This is a
well written book, worth buying.

THE EXAMPLE PROBLEM
We want to study Galileo’s experiment of dropping iron spheres from the 60
m high leaning Tower of Pisa and seeing how long it takes for them to hit the
ground.

If we ignore air resistance, we can easily solve this problem using Physics I
only. In particular, let s be the distance that the sphere has traveled down. By
definition, the time derivative of the distance traveled is the velocity v. And
Newton’s second law tells us that the massm of the sphere times the acceleration
(the time derivative of the velocity v), equals the force. That force is the force
of gravity mg. So altogether we have:

ds
dt = v m

dv
dt = mg

A system of equations like this is called a system of "Ordinary Differential Equa-
tions", (ODE), because the equations contain derivatives.

To solve the above ODE, we still need some additional information. In particu-
lar, we need "Initial Conditions" valid at the time that Galileo drops the sphere.
We will take this time to be zero. At that time, the sphere has not yet traveled
any distance so s must be zero at the initial time. In addition, we will assume
that Galileo drops the sphere, not that he throws it down. So we also assume
that v is zero at the initial time. So both initial conditions are zero:

at the initial time t = 0 :
{
s = 0
v = 0
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Solving the problem analytically.
To solve this system analytically, we can easily integrate the second ODE (i.e.
Newton’s second law), to give

v = gt+ C1

where C1 is a constant. This constant must be zero because of the initial
condition that v = 0 when t = 0. Then we can integrate the first ODE to find
the displacement s as:

s = 1
2gt

2 + C2

and C2 must be zero because of the initial condition that s = 0 when t = 0.
Substituting in the 60 m height of the tower of Pisa for s and 9.81 m/s2 for g,
we find that the time for the sphere to reach the ground is about 3.5 seconds.

SOLVING THE PROBLEM WITH MATLAB INSTEAD
Next we would like to solve the same problem as above, not mathematically
but numerically with Matlab. For non-tricky systems of ODE like the current
example, the usual way to solve it is using the ode45 function.

Specifying the given ODE
Of course, ode45 will need information on what ODE we want it to solve. It
is not a mindreader. We must provide this information as a function. This
function must satisfy very specific requirements.

The input arguments should be (1) the independent variable, the time t in our
case, or t in Matlab; and (2) the unknowns, s and v in our case, combined into
a single column array. We will name this array unknowns.

The output argument of the function must be the derivatives of the unknowns,
combined into a single column array. We will name this array unknownsDeriva-
tives. Inside the function, we should compute the derivatives from the input
unknowns using the ODE.

A minimal function that satisfies these requirements for our problem is function
Galileo1 shown below:

function unknownsDerivatives = Ga l i l e o1 ( t , unknowns )

% take the unknowns out o f t h e i r array f o r r e a d a b i l i t y
s=unknowns (1 ) ;
v=unknowns (2 ) ;

% f i n d the d e r i v a t i v e ds/ dt now
dsdt=v ;
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% a c c e l e r a t i o n o f g r a v i t y
g=9.81;

% f i n d the d e r i v a t i v e dv/ dt now from Newton ’ s second law
dvdt=g ;

% return the d e r i v a t i v e s as a ∗column∗ array
unknownsDerivatives=[dsdt dvdt ] ’ ;

end

The ode45 call
Next we can find the solution of the ODE problem using ode45. The needed
command takes the general form:

[ tValues unknownsValues ] = . . .
ode45 (ODEFUN, tDes ired , unknownsIn i t ia lVa lues )

Let’s look at this in more detail. For the first input parameter of ode45,

ODEFUN

we must specify our function Galileo1 that computes the derivatives of the
unknowns using the ODE. The name should be preceded by an @. Check lesson
2 for why.

For the second input parameter of ode45,

tDes i r ed

we must specify the times for which we want ode45 to find the unknowns. We
want ode45 to compute the solution from time 0 to the 3.5 seconds it takes
the sphere to hit the ground. If we were only interested in the values of the
unknowns at the final time 3.5, we could specify tDesired as [0 3.5]. Then
ode45 will return the unknowns at the initial time 0, some intermediate times
of its own choosing, and the final time 3.5. However, we also want to plot
the intermediate times, and ode45 might not return enough times to do that
accurately. To be safe, it is better to fully specify the times to find the unknowns
at. That can be done by specifying tDesired as linspace(0,3.5,n) with n say
50 to get the unknowns at 50 equally spaced times.

For the third and last input parameter of ode45,

unknownsIn i t ia lVa lues
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we must specify the initial values for the unknowns. In our example, initially
both s and v are zero, so we need to specify two zeros here. Note that this
should be a column array so specify it either as [0; 0] or as [0 0]’. (The quote
turns the [0 0] row into a column.)

As far as the output produced by the

[ tValues unknownsValues ] = . . .
ode45 (ODEFUN, tDes ired , unknownsIn i t ia lVa lues )

ode45 call is concerned:

• tValues is a column array that contains the values of the time t at which
ode45 has computed the unknowns s and v for us.

• unknownsValues are the values of the unknowns at these times, as a two-
dimensional array.

Let’s try it:

% the g iven i n i t i a l v a l u e s s=0, v=0, as a column array
unknownsIn i t ia lVa lues =[0 0 ] ’ ;

% reque s t the s o l u t i o n at 50 t imes from 0 to 3.5
tDes i r ed=linspace ( 0 , 3 . 5 , 5 0 ) ;

% c a l l ode45 to f i n d the s o l u t i o n f o r those t imes
[ tValues unknownsValues ] = . . .

ode45 ( @Gali leo1 , tDes i red , unknownsIn i t ia lVa lues ) ;

Function ode45 has now computed the unknowns s and v at the times in
tValues. However, it has dumped all the computed values in the single array
unknownsValues. In particular:

1. unknownsValues(:,1) are the values of the first unknown, s in our ex-
ample, for all computed times in tValues.

2. unknownsValues(:,2) are the values of the second unknown, v in our
example, for all computed times in tValues.

Note that the second index is always the number of the unknown. The first
index is the number of the computed time; specifing this as a colon means "all
computed times".

To avoid code that is hard to read and error prone, we should take the individual
unknowns out of array unknownsValues and give them easily understandable
names. In this case we only need the s values.
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% take the s va l u e s computed by ode45 out o f the 2D array
sValues=unknownsValues ( : , 1 ) ;

We can now do the things we want:

% p l o t the s va l u e s aga in s t the t imes in tValues
plot ( tValues , sValues )

% p r i n t out the f i n a l d i s t ance us ing ode45
fpr intf ( ’Without a i r r e s i s t an c e , the ode45 d i s t anc e \n ’ )
fpr intf ( ’ a f t e r 3 . 5 seconds i s : %7.4 f m\n ’ , sValues (end) )

% p r i n t out the f i n a l d i s t ance us ing the a n a l y t i c formula
fpr intf ( ’Without a i r r e s i s t an c e , the exact d i s t anc e \n ’ )
fpr intf ( ’ a f t e r 3 . 5 seconds i s : %7.4 f m\n ’ , 0 . 5∗9 . 81∗3 . 5^2 )

Without a i r r e s i s t an c e , the ode45 d i s t anc e
a f t e r 3 . 5 seconds i s : 60 .0863 m
Without a i r r e s i s t an c e , the exact d i s t anc e
a f t e r 3 . 5 seconds i s : 60 .0862 m
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USING ANONYMOUS FUNCTIONS
For more complicated problems, we may need to use anonymous functions, just
like we needed to do in lessons 2 and 3.

The problem with air resistance
For an example problem that will require an anonymous function, consider the
case where we include air resistance. Air resistance will slightly slow down even
a heavy sphere, and can slow down a light sphere quite a lot.

Air resistance makes solving the motion analytically a lot more difficult. For-
tunately, with Matlab we can still solve it easily numerically. The only thing
we need to do is add the correct air resistance force. In particular, the two
equations become

ds
dt = v m

dv
dt = mg − Fair

Until you reach Thermal Fluids 1, you will need to google what the expression
for the air resistance of a sphere is. It turns out to be

Fair = CD
1
2ρairv

2A

where CD is called the "drag coefficient" of the sphere, ρair is the density of air,
and A is the "frontal area" (area seen from the front) of the sphere,

A = πr2

where r is the radius of the sphere.

Also note that when we divide Newton’s equation by the mass of the sphere m,
as we need to do to get the derivative of v, we end up with a term Fair/m. So
the mass no longer drops out. That means that we now also need to know the
mass of the iron sphere. That is simply the density of iron times the volume of
the sphere,

m = ρiron
4π
3 r3

Approximate values for the various constants we need are

CD ≈ 0.5 ρair ≈ 1.225 kg/m3 ρiron ≈ 7, 860 kg/m3

Note that in reality the drag coefficient depends on the velocity (see Wikipedia).
The value 0.5 is a reasonable ballpark average value.

We can put the above equations and constants in a new function called Galileo.
This function then includes the effect of air resistance. However, we should not
put any particular value for r in the function, as we want to try out a number of
different values of r. It would be messy and error-prone to change the function
for every individual value of r. So our only reasonable option is to add r to the
input arguments of function Galileo. Then the final function becomes:
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function unknownsDerivatives = Ga l i l e o ( t , unknowns , r )

%
% Function t h a t d e s c r i b e s the ordinary d i f f e r e n t i a l
% equa t ions governing G a l l i l e o ’ s f a l l i n g i ron spheres .
%
% unknownsDerivat ives = G a l i l e o ( t , unknowns , r )
%
% Input : t : the time s ince the s t a r t o f the f a l l .
% unknowns : array wi th two components :
% unknowns (1) : the d i s t ance ’ s ’ t h a t the
% sphere has t r a v e l e d down .
% unknowns (2) : the downward v e l o c i t y ’ v ’ o f
% the sphere .
% r : rad ius o f the i ron sphere .
%
% Output : unknownsDerivat ives : the time d e r i v a t i v e s o f
% the unknowns :
% unknownsDerivat ives (1) = ds/ dt = v
% unknownsDerivat ives (2) = dv/ dt = . . .
% ( FGravity − FAir )/m
% where FGravity i s the f o r c e o f g rav i t y , FAir
% the f o r c e o f a i r r e s i s t ance , and m the mass o f
% the iron sphere .
%
% This func t i on assumes c e r t a i n reasonab l e va l u e s f o r the
% a c c e l e r a t i o n o f g rav i t y , the d e n s i t i e s o f i ron and air ,
% and the average drag c o e f f i c i e n t o f the sphere . These
% va lue s may need to be ad ju s t ed depending on cond i t i on s .
%

% take the unknowns out o f t h e i r array f o r r e a d a b i l i t y
s=unknowns (1 ) ;
v=unknowns (2 ) ;

% f i n d the d e r i v a t i v e ds/ dt now
dsdt=v ;

% a c c e l e r a t i o n o f g r a v i t y
g=9.81;

% d e n s i t y o f i ron
rhoIron =7860;

% d e n s i t y o f a i r a t sea l e v e l

9



rhoAir =1.225;

% approximate drag c o e f f i c i e n t o f a normal s i z e sphere
CD=0.5;

% f r o n t a l area o f the iron sphere
A=pi∗ r ^2 ;

% mass o f the i ron sphere
m=(4/3)∗pi∗ r ^3∗ rhoIron ;

% forc e o f g r a v i t y
FGravity=m∗g ;

% forc e o f a i r r e s i s t a n c e
FAir=CD∗0 .5∗ rhoAir ∗v^2∗A;

% f i n d the d e r i v a t i v e dv/ dt now from Newton ’ s second law
dvdt=(FGravity−FAir ) /m;

% return the d e r i v a t i v e s as a ∗column∗ array
unknownsDerivatives=[dsdt dvdt ] ’ ;

end

The needed anonymous function
The additional parameter r in function Galileo is a problem because ode45
will not accommodate it. As far as ode45 is concerned, the function ODEFUN
must have exactly two input parameters; time and the array of unknowns.

The solution for this problem is much like the earlier one for fzero in lesson 2.
We must define an anonymous function that has the two arguments that ode45
needs and that uses Galileo to get its values. In short,we need the anonymous
function

( t , unknowns ) Ga l i l e o ( t , unknowns , r )

That then is the last thing needed in getting the case with air resistance to
work.

Creating a script for solving the problem
Since we want to find the solution for more than one value of the sphere radius
r, it would be messy to keep retyping the same code.
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Instead what we can do is create a script file SolveGalileo.m that finds one
solution assuming the value of r has already been set. Then we can run this
same script using different values for r.

The contents of script SolveGalileo.m are:

% the g iven i n i t i a l v a l u e s s=0, v=0, as a column array
unknownsIn i t ia lVa lues =[0 0 ] ’ ;

% reque s t the s o l u t i o n at 50 t imes from 0 to 3.5
tDes i r ed=linspace ( 0 , 3 . 5 , 5 0 ) ;

% c a l l ode45 to f i n d the s o l u t i o n to the f i n a l time
[ tValues unknownsValues ] = . . .

ode45 (@( t , unknowns ) Ga l i l e o ( t , unknowns , r ) , . . .
tDes ired , unknownsIn i t ia lVa lues ) ;

% take the s va l u e s computed by ode45 out o f the 2D array
sValues=unknownsValues ( : , 1 ) ;

% p r i n t out the sphere diameter and f i n a l d i s t ance
fpr intf ( ’ For D = %4.2 f m, the d i s t anc e i s : %5.2 f m\n ’ , . . .

2∗ r , sValues (end) )

% p l o t the d i s t ance t r a v e l e d s ver sus time t
plot ( tValues , sValues )

Computing a few different cases
Now we are ready to study the effect of the sphere radius!

% tr y a 20 cm rad ius
r =0.2 ;
% run s c r i p t S o l v e G a l i l e o to f i n d the d i s t ance
So l v eGa l i l e o

% put a ho ld on the graph so t h a t we can add more curves
hold on

% tr y a 5 cm rad ius
r =0.05;
% run s c r i p t S o l v e G a l i l e o to f i n d the d i s t ance
So l v eGa l i l e o

% tr y a 2.5 cm rad ius
r =0.025;
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% run s c r i p t S o l v e G a l i l e o to f i n d the d i s t ance
So l v eGa l i l e o

% tr y a 1 cm rad ius
r =0.01;
% run s c r i p t S o l v e G a l i l e o to f i n d the d i s t ance
So l v eGa l i l e o

% tr y a 0.5 cm rad ius
r =0.005;
% run s c r i p t S o l v e G a l i l e o to f i n d the d i s t ance
So l v eGa l i l e o

% add t i t l e , l a b e l s , and a l egend to the graph
t i t l e ( ’ Fa l l i n g Distance o f an Iron Sphere in 3 .5 s ’ )
xlabel ( ’ t ’ )
ylabel ( ’ s ’ )
legend ( ’D = 40 cm ’ , . . .

’ 10 cm ’ , . . .
’ 5 cm ’ , . . .
’ 2 cm ’ , . . .
’ 1 cm ’ , . . .
’ l o c a t i o n ’ , ’ s outheas t ’ )

% put the l egend t e x t to the l e f t o f the l i n e segments
legend ( ’ l e f t ’ )

% al l ow any o ther f i g u r e s to be made
hold o f f

For D = 0.40 m, the d i s t ance i s : 59 .91 m
For D = 0.10 m, the d i s t ance i s : 59 .40 m
For D = 0.05 m, the d i s t ance i s : 58 .73 m
For D = 0.02 m, the d i s t ance i s : 56 .87 m
For D = 0.01 m, the d i s t ance i s : 54 .14 m

Note that the 10 cm sphere should be about half a meter in front of the 5 cm
one when they reach the ground. However, a dishonest Galileo could easily
compensate for that by dropping the bigger sphere about 0.02 s later than the
smaller one. That is an imperceivably small delay. Even a honest Galileo might
do it.

ADDITIONAL REMARKS
Make sure that you use suitable units when solving ODE with ode45. For
example, do not try to solve Galileo’s problem in units of microns and centuries.
If your expected solution consists of very large or very small numbers, at the
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very least you will need to change an option like AbsTol to an appropriate value.
See the Matlab documentation.

If the system of first order differential equations describes, say, a set of chemical
reactions, there may be a problem with using ode45. Typically, some reactions
proceed very quickly and others much more slowly. The slow reactions imply
that you have to solve the evolution for a relatively long time. But ode45 must
compute accurately over the shortest time scales in order not to get the fast
reactions all wrong. Having to compute accurately over very many short time
intervals is a problem for ode45; the computation may take excessive computa-
tional time.

Such a problem, and any other problem where there is a very large spread in
typical time scales, is called "stiff". For stiff problems you want to use a solver
dedicated to such problems. One basic one provided by Matlab is ode15s. It
can be used just like ode45.
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