
2 ZEROS OF FUNCTIONS
Contents

LESSON SUMMARY 1

Key areas of the online book 2

THE PROBLEM WE WANT TO SOLVE 2

THE ERROR IN THE EQUATION AS A FUNCTION 3

Play a bit with the function 4

PLOT TO UNDERSTAND THE PROBLEM BETTER 4

Plot the error for 0 < omega < 12 4

Try improving the plot 5

Try, try, try again 6

ACCURATE VALUES FOR THE FREQUENCIES 7

Finding the value of the lowest frequency 7

How about the other frequencies? 9

Find a lot more frequencies now 9

HOW ABOUT IF THE STIFFNESS IS NOT 1?? 11

Add the stiffness k as a function argument 11

Using an anonymous function 12

Read: More on @: function handles and quick functions 14

PRINT OUT THE FREQUENCIES NICELY 15

ADDITIONAL REMARKS 17

1

% make sure the workspace i s c l e a r
i f ~exist (’___code___ ’ , ’ var ’) ; clear ; end

% reduce n e e d l e s s wh i te space
format compact
% reduce i r r i t a t i o n s (pausing and b u f f e r i n g)
more o f f
% s t a r t a d iary (in the a c t u a l l e c t u r e)
%diary l e c t u r e 3 . t x t

LESSON SUMMARY
• This lesson explains how to solve a single nonlinear equation in one vari-
able, for example f(x) = 0 for some given function f(x).

• There are two key steps in solving an equation for an unknown x:

1. Create a Matlab function file that returns (outputs) the error in the
equation as a function of the unknown x. The error is in general the
difference between the left- and right-hand sides. So if the equation is
f(x) = 0, then the error is just function f(x).

2. Let Matlab function fzero find a location where the error is zero, i.e. a
solution or root. To do so, you must tell fzero what your function is that
gives the error in the equation. The function name must be preceded by
an @ character. You must also either (a) give fzero a starting value for
x near which it needs to search for the root you want; or (b) give fzero
an x-range in which to search for the root.

• Giving fzero a starting value for x is inefficient and can fail. It is much
safer to give fzero a range in which to search. As long as you ensure that
the error is of opposite sign at the two end points of the range you give
it, fzero is guaranteed to find a root. So if you also ensure that the range
is small enough that there is only one root inside it, fzero will find that
root.

• To identify a suitable range (or starting value) for x, you will want to
make a plot of your error function versus x. The Matlab plot function
can make the graph for you if you give it a lot of closely spaced x-values and
corresponding error-values. In Matlab, the x-values will form an "array",
and so will the error-values.

• Neat, readable, and understandable plots will also need title, legend,
grid, xlabel, ylabel, set(gca,...,...), ... commands as appropriate.

2

• The plot will then allow you to ballpark the x-values where the error is
zero, the roots of the equation. You can then use each ballparked value
as a starting value for fzero, or identify a suitable range around each
ballparked value.

• Function fzero can only handle functions of a single variable. (The vari-
able does not have to be called x, but there cannot be more than one of
them.) So if you, say, want to solve an equation like f(x, y) = 0 for x
given a value for y, there is a problem. In Matlab you can fix this problem
using the concept of "anonymous functions".

• You will also need to learn to print out the numbers you find in a neat and
prescribed format using the Matlab fprintf function. Function fprintf
allows you to specify exactly how you want the number formatted; for
example, how many digits behind the decimal point to print.

Key areas of the online book
Before the lecture, in the online book do:

• 3.7 Basic output, fprintf: all.

• 3.8 Floating-point formatting in fprintf: all.

• 4.1 Introduction to arrays: complete the section.

• 4.2 Row arrays: do PA 4.2.1.

• 4.3 Constructing row arrays: do PA 4.3.1-4.

• 4.8 Functions to create arrays: do PA 4.8.1 and CA 4.8.1.

• 5.5 Functions and 1D arrays: skip the CAs.

• 9.1 Simple plotting: all.

Note: while the online book has a section 18.5 on finding zeros of functions, it
is overly mathematical and provides much less explanation of what is going on
than I do below. I suggest to stay clear of section 18.5.

THE PROBLEM WE WANT TO SOLVE
The main purpose of this lesson is to explain how to solve a single nonlinear
equation in one variable. Of course, for a quadratic equation, i.e.

f(x) = ax2 + bx+ c = 0

there is a simple formula for the two solutions (or "roots"). This lesson is for
the case that you do not know how to solve the equation analytically, or even
how many roots there are.

3

In particular, as an example we will solve the equation

sin(ω) = −kω cos(ω)

for the unknown ω (or omega in Matlab).

It can be shown that the solutions (roots) ω to this equation are the nondimen-
sional frequencies of vibration of a string with one end rigidly attached and the
other end flexibly attached. The constant k is a nondimensional stiffness of the
flexible attachment.

But you do not have to know all that. All you need to know is how to solve an
equation like the one above using Matlab. The above equation does not have
an analytical solution. But the Matlab function fzero can be used to solve it
numerically.

THE ERROR IN THE EQUATION AS A FUNCTION
If we should have that

sin(ω) = −kω cos(ω)

then if ω is not right, there will be an error in the equation. We can take this
error to be the difference between the left- and right-hand sides of the equation:

error = sin(ω) + kω cos(ω)

Note that this error is a function of ω. And only if the error is zero do we have
a correct value of ω. So, basically we need to find out the values of ω where the
above function of ω is zero. Matlab function fzero can help us do this.

But to use fzero, we must first put the function above in a Matlab function
file. To keep it as simple as possible, for now we will assume that k equals 1.
A reasonable name for our function is therefore FreqEqError1 (for "Frequency-
Equation Error for k = 1"). The minimal contents of the corresponding function
file FreqEqError1.m is then:

function errorEq = FreqEqError1 (omega)

errorEq = sin (omega) + omega .∗ cos (omega) ;

end

Note above that proper frequencies are in radians, not degrees. Also note that
the point in .∗ is needed since fzero may input an array of ω values. And note
that the semicolon is also definitely needed; else the function will print out every
error it evaluates.

Play a bit with the function

4

% see whether Matlab can see the func t i on
%he lp FreqEqError1

% fo r omega=0 the error i s zero but t h e r e i s no sound !
e r r o r 0=FreqEqError1 (0)

% fo r omega=1 the error i s not zero , so omega=1 i s _not_
% a frequency o f v i b r a t i o n o f t h i s s t r i n g
e r r o r 1=FreqEqError1 (1)

% how about 2?
e r r o r 2=FreqEqError1 (2)

% how about 1 .9 or 2.1?
er ror1p9=FreqEqError1 (1 . 9)
e r ror2p1=FreqEqError1 (2 . 1)

e r r o r 0 = 0
e r r o r 1 = 1.3818
e r r o r 2 = 0.077004
er ror1p9 = 0.33205
er ror2p1 = −0.19697

There seems to be a root between 1.9 and 2.1! (Or more precisely, between 2
and 2.1.)

PLOT TO UNDERSTAND THE PROBLEM BETTER
Somehow we must find the locations where function FreqEqError1 is zero. That
is not that straightforward. So maybe we should first plot the function.

Plot the error for 0 < omega < 12
The Matlab ’plot’ function can plot a curve if you give it enough points on the
curve.

% genera te 121 omega va l u e s between 0 and 12
omegaPlot = [0 : 0 . 1 : 1 2] ;

% t h i s makes omegaPlot a row o f numbers
%omegaPlot

% a s imp ler way to do the same th ing
omegaPlot=linspace (0 ,12 ,121) ;
%omegaPlot

5

% compute the corresponding e r ro r s
e r r o rP l o t=FreqEqError1 (omegaPlot) ;
%erro rP lo t

% p l o t the error ver sus omega
plot (omegaPlot , e r r o rP l o t)

Try improving the plot

% to f i n d out how to modify the p l o t
%he lp p l o t

(or you can google ’matlab chart line properties’.)

% colon : dashed l i ne , o : c i r c l e symbols , r : red l i n e
plot (omegaPlot , e r ro rP lo t , ’ : or ’ , ’ LineWidth ’ , 2)

If you count the circles you should find that there are 121 exactly.

6

Try, try, try again

% redo from scra t ch
plot (omegaPlot , e r r o rP l o t)

% e x p l i c i t l y s e t the x− and y−axes l i m i t s
axis ([0 12 −10 7])

% add a g r i d
grid on

% add l a b e l s on the x− and y−axes
xlabel (’ omega ’)
ylabel (’ e r r o r f o r k=1 ’)

% add a t i t l e
t i t l e (’ Frequency Equation Error ’)

% put the x−a x i s a t y=0
%s e t (gca)
set (gca , ’ x a x i s l o c a t i o n ’ , ’ o r i g i n ’)

7

There is clearly a root somewhere near 2. And there are other roots too: near
5, 8, 11, ...

ACCURATE VALUES FOR THE FREQUENCIES
To keep it simple, let’s keep k=1 for now and find the lowest frequency, the one
near 2, first. This can be done using Matlab function fzero.

Finding the value of the lowest frequency
We want to find the lowest positive frequency omega, call it omega1, where
function FreqEqError1 is zero. We already concluded from the graph that the
value of omega1 will be close to 2.

Matlab can find zeros ("roots") of functions using the fzero library function.

Warning: The word "root" as used here has nothing to do with a square root.
It simply means the position where a function is zero. For example if f(x) = 0
when x = x1, then x1 is a "root" of the equation f(x) = 0.

When using fzero:

1. As its first input argument you must specify the function you want to be
zero; FreqEqError1 in this case. The function name must be preceded by

8

an @ character. (The reason has to do with the fact that a function name
is not a normal input argument. For now just remember that you need an
@.)

2. As the second input argument of fzero, you must specify either a rough
guess for the root you want or a range in which it is located.

Giving a range is safer and more efficient than giving an initial guess. If you
give an initial guess, fzero will try to find an range that contains the nearest
root by itself. However, this may fail; probably you understand more about the
function than fzero does.

% Get a c l u e how to use f z e r o f i r s t
%he lp f z e r o

% our approximate guess f o r the f i r s t roo t
omegaGuess1=2
% l e t f z e r o search f o r the exac t roo t from t h i s guess
omega1=fzero (@FreqEqError1 , omegaGuess1)

omegaGuess1 = 2
omega1 = 2.0288

This value happens to be OK. But it might just as well have failed. And it is
inefficient.

The best way is to tell fzero to search in a small range that contains only the
root we want, like from 2 to 2.1. Note from the values given earlier that the
errors are of opposite sign at 2 and 2.1; so the error must be zero somewhere
in between 2 and 2.1.

% the range in which to search f o r the roo t
omegaRange1=[2 2 . 1]
% check t h a t the end po in t e r ro r s are o f d i f f e r e n t s i gn
endPointErrors=FreqEqError1 (omegaRange1)

omegaRange1 =
2.0000 2 .1000

endPointErrors =
0.077004 −0.196967

That seems to be OK!

% l e t f z e r o search f o r the exac t roo t in t h i s range
omega1=fzero (@FreqEqError1 , omegaRange1)

omega1 = 2.0288
The result is the same as before. But this method was absolutely safe!

9

How about the other frequencies?
How about the frequencies near omega = 5, 8, 11, ...? That is going to be messy.
So let’s look a bit better at the plot first.

% redo the p l o t from sc ra t ch (f o r p u b l i s h i n g purposes)
plot (omegaPlot , e r r o rP l o t)
axis ([0 12 −10 10])
grid on
xlabel (’ omega ’)
ylabel (’ e r r o r f o r k=1 ’)
t i t l e (’ Frequency Equation Error ’)
set (gca , ’ x a x i s l o c a t i o n ’ , ’ o r i g i n ’)

% s e t the t i c k marks at odd m u l t i p l e s o f p i /2
set (gca , ’ x t i c k ’ , [pi /2 : pi : 1 2])
% 2016 b+ Matlab may in s t ead use func t i on x t i c k s

% change the numbers on the t i c k marks
set (gca , ’ x t i c k l a b e l ’ , . . .

{ ’ \ p i /2 ’ ’ 3\ p i /2 ’ ’ 5\ p i /2 ’ ’ 7\ p i /2 ’ })
% 2016 b+ Matlab may in s t ead use func t i on x t i c k l a b e l s

Find a lot more frequencies now
It seems that all the correct frequencies are a bit bigger than the odd multiples
of π/2. So we can probably use each odd multiple of π/2 as a starting point for
finding the corresponding frequency.

Or much better, we can use the odd multiple and the next odd multiple as a
search range which will give the corresponding frequency for sure!

% l e t ’ s t r y i t out
omegaRange1=[pi/2 3∗pi /2]
omega1=fzero (@FreqEqError1 , omegaRange1)

omegaRange1 =
1.5708 4 .7124

omega1 = 2.0288

Yes, that produced the correct root again

% the second frequency , near 5
omegaRange2=[3∗pi/2 5∗pi /2]
omega2=fzero (@FreqEqError1 , omegaRange2)

10

omegaRange2 =
4.7124 7 .8540

omega2 = 4.9132

% the t h i r d frequency , near 8
omegaRange3=[5∗pi/2 7∗pi /2]
omega3=fzero (@FreqEqError1 , omegaRange3)

omegaRange3 =
7.8540 10.9956

omega3 = 7.9787

% the f ou r t h frequency , near 11
omegaRange4=[7∗pi/2 9∗pi /2]
omega4=fzero (@FreqEqError1 , omegaRange4)

omegaRange4 =
10.996 14 .137

omega4 = 11.086

The difference from the start of the range, 7 pi/2, is less than 1% now!

11

To less than a percent error, we may approximate the remaining frequencies as
9π/2, 11π/2, 13π/2, 15π/2, . . .

HOW ABOUT IF THE STIFFNESS IS NOT 1??
So far we assumed that k was 1 in

sin(ω) = −kω cos(ω)

What if it is not? Surely we cannot create a new function for every possible
value of k??

Add the stiffness k as a function argument
To solve this problem, we can create a function that accepts k as a second input
argument. Then we can use that function for any k we want. We will call this
function FreqEqError. And this time we will put proper comments in the file
(absolutely required for your homework solutions!):

function errorEq = FreqEqError (omega , k)

%
% Function used to f i n d the na tura l f r e q u e n c i e s o f a
% s t r i n g t h a t has one end r i g i d l y a t tached to the musica l
% instrument but the o ther end a t tached to a f l e x i b l e
% s t r i p .
%
% errorEq = FreqEqError (omega , k)
%
% Input :
% omega : The f requency to t e s t , in rad ians .
% k : The bending s t i f f n e s s o f the s t r i p .
% These parameters are s u i t a b l y nondimens iona l i zed in
% a way not important here .
%
% Output :
% errorEq : Zero i f omega i s a c o r r e c t f requency (tone)
% of the s t r i n g , nonzero i f i t i s not .
%
% Advanced a n a l y s i s t augh t in Ana lys i s in Mechanical
% Engineer ing I I shows t h a t the equat ion the f r e q u e n c i e s
% must s a t i s f y i s :
% s in (omega) = − k omega cos (omega)
% So i f the f requency i s not r i g h t , the error in the
% equat ion (d i f f e r e n c e between the l e f t and r i g h t hand
% s i d e s) i s :
% errorEq = s in (omega) + k omega cos (omega)

12

%

% s e t the re turn v a r i a b l e equa l to the error
errorEq = sin (omega) + k∗omega .∗ cos (omega) ;
% omega i s in rad ians and the .∗ and ; are r e a l l y needed

end

Using an anonymous function
Function fzero can only find zeros of functions with a single input argu-
ment. FreqEqError has two, omega and k, so there is no way to use function
FreqEqError directly in fzero.

Instead we must tell Matlab to create a new function with a single input argu-
ment omega. This function should have the desired value of k already hidden
inside. Then we can give that function to fzero.

The convenient way to do that is to tell Matlab to create an anonymous (name-
less) function (omega) of omega. (It is called anonymous because there is no
name like f or sin or log or whatever in front of the (omega).) This anony-
mous function should for a given omega return FreqEqError(omega,k), if we
have already set the desired value of k earlier.

To define the anonymous function, follow the function specification (omega) by
its definition in terms of FreqEqError:

(omega) FreqEqError (omega , k)

This can be specified as first input argument of fzero if preceded by an @
character.

% l e t ’ s f i r s t t r y i t f o r our o ld va lue k = 1
k=1
omegaRange1=[0.5∗pi 1 .5∗ pi]
omega1=fzero (@(omega) FreqEqError (omega , k) , omegaRange1)
omegaRange2=[1.5∗pi 2 .5∗ pi]
omega2=fzero (@(omega) FreqEqError (omega , k) , omegaRange2)

k = 1
omegaRange1 =

1.5708 4 .7124
omega1 = 2.0288
omegaRange2 =

4.7124 7 .8540
omega2 = 4.9132

13

Seems to work OK.

How about another value of k now?

% tr y k = 2 now
k=2

% compute the new f r e q u e n c i e s as b e f o r e f o r t h i s k
omegaRange1=[0.5∗pi 1 .5∗ pi]
omega1=fzero (@(omega) FreqEqError (omega , k) , omegaRange1)
omegaRange2=[1.5∗pi 2 .5∗ pi]
omega2=fzero (@(omega) FreqEqError (omega , k) , omegaRange2)
omegaRange3=[2.5∗pi 3 .5∗ pi]
omega3=fzero (@(omega) FreqEqError (omega , k) , omegaRange3)
omegaRange4=[3.5∗pi 4 .5∗ pi]
omega4=fzero (@(omega) FreqEqError (omega , k) , omegaRange4)

k = 2
omegaRange1 =

1.5708 4 .7124
omega1 = 1.8366
omegaRange2 =

4.7124 7 .8540
omega2 = 4.8158
omegaRange3 =

7.8540 10.9956
omega3 = 7.9171
omegaRange4 =

10.996 14 .137
omega4 = 11.041

Seems to work OK.

Read: More on @: function handles and quick functions
Why do we need to put an @ in front of a function that we provide as an input
argument to another function (in particular to fzero in our case)?

The basic reason is that a function is not a normal input argument. A normal
input argument of a function may be explicit data, (like the 4 in sqrt(4), say)
or the name of a variable whose data is passed on to the function (like the x
in sqrt(x), say) or some combination of the two. In any case, what is passed
to the function is some sort of data. The name of a function is not data for
Matlab, it is something special.

However, if you precede a function name or anonymous function definition by
an @ character, it creates data; data on the function. This data is called a

14

"function handle". The data is not, of course, a simple number (which Matlab
would call a "double"). Instead if the function is in a function file on disk, the
function handle consists of, among others, the name of the function and the
location on disk where it is stored. If the function is an anonymous one, the
function handle consists of the definition of the anonymous function, as well as
the values of any constants the definition used, like k in our case.

In either case, the function handle data is passed to fzero. So all is well again,
as far as Matlab is concerned: fzero receives data of some kind, a function
handle, in its first input argument. It does not receive a function name. (Since
an anonynmous function has no name, the latter would not be possible anyway.)

But how does having data on the function help fzero? Well, there is one
additional point. If a variable contains a function handle, Matlab allows you
to use the name of that variable to evaluate the function. It is as if the name
of the variable was a name for the function. So whoever wrote function fzero
could use the name of the first input argument of fzero as if it was the name
of the function that should be zero.

Why am I telling you all this? Well, this can also be helpful for other purposes
too, in particular for quickly defining a "function". If you store the handle of
an anonymous function in a variable, then the name of that variable acts much
like a name of the anonymous function.

For example, the next would work fine to get the first frequency:

% s e t a va lue f o r k
k=1
% put the anonymous func t i on handle in a v a r i a b l e
funHandle=@(omega) FreqEqError (omega , k)
% p r i n t out a va lue o f FreqEqError f o r t e s t i n g
FreqEqError (2 , k)
% check t h a t funHandle (2) g i v e s the ∗same∗ va lue
funhandle (2)
% OK, so now l e t f z e r o f i n d the f i r s t roo t
omega1=fzero (funHandle , [0 . 5 ∗ pi 1 .5∗ pi])

(Note that there is no @ before funHandle; funHandle is not really the name
of a function, it is just a variable that contains a function handle. But do not
worry too much about that; if you do put an @, Matlab will complain loudly,
and you know.)

So why did I not tell you to do things the above way in the first place? Well,
one big reason is that the way I told you to do it, the first argument always
starts with an @. That is easy to remember. The other big reason is that after
the above, the following would not work correctly.

15

k=2
omega1=fzero (funHandle , [0 . 5 ∗ pi 1 .5∗ pi])

After you change k you must recreate funHandle; this is not automatic. (Al-
though you can only see it clearly in Octave, the function handle saves the value
of k, not the name of the variable.) So I think it is simpler and safer to just
avoid saving function handles in variables. (But admittedly, it may be some-
what less efficient, as the function handle must be recreated every time. Not a
big deal for us.)

PRINT OUT THE FREQUENCIES NICELY
The fprintf function allows you to print out numbers in your own way. Use it
as

f p r i n f (’FORMATSTRING’ ,VARIABLES)

The FORMATSTRING contains the literal text you want to print, as well as a
"formatting operator" for each numerical variable whose value is to be printed.
The formatting operators are:

• %i: integer (%d also works)

• %f: floating point number

• %e: floating point number in exponential notation

• %E: floating point number in Exponential notation

• %g: either %f or %e, depending on the number

WARNING: Normally you need to end FORMATSTRING with \n. Otherwise
the line does not end.

In the first following fprintf statement,

• the first %f gets replaced by the value of k

• the %i gets replaced by the frequency number 1

• the second %f gets replaced by the value of omega1

and similar for the other three fprintf statements.

% p r i n t out the found f r e q u e n c i e s format ted
fpr intf (’ f o r k =%f , omega%i equa l s : %f \n ’ , k , 1 , omega1)
fpr intf (’ f o r k =%f , omega%i equa l s : %f \n ’ , k , 2 , omega2)
fpr intf (’ f o r k =%f , omega%i equa l s : %f \n ’ , k , 3 , omega3)
fpr intf (’ f o r k =%f , omega%i equa l s : %f \n ’ , k , 4 , omega4)

16

f o r k =2.000000 , omega1 equa l s : 1 .836597
f o r k =2.000000 , omega2 equa l s : 4 .815842
f o r k =2.000000 , omega3 equa l s : 7 .917053
f o r k =2.000000 , omega4 equa l s : 11 .040830

It is illegal in this class to put actual data numbers in FORMATSTRING! (Well, I
guess it would be defensible to put the 1, 2, 3, and 4 explicitly in FORMAT-
STRING.)

The above is not yet good enough. You must take control of the formatting! To
specify the precise way a number should be printed, use:

• %PRINTPOSITIONSi for integers

• %PRINTPOSITIONS.DIGITSBEHINDPOINTf for floating point num-
bers

• ...

In the current case, that works out to:

• Use %.0f to print k with zero digits behind the point

• Use %1i to print the root number in a single print position

• Use %5.2f to print the frequency with 2 digits behind the decimal point
and 5 print positions total, so that, say, 1.836. . . prints as [SPACE]1.84
and 11.040. . . as 11.04. This makes the decimal points align.

% p r i n t out the f i r s t f requency
fpr intf (’ f o r k = %.0 f , omega%1i equa l s : %5.2 f \n ’ , . . .

k , 1 , omega1)

f o r k = 2 , omega1 equa l s : 1 .84

Note that %f did perform rounding of 1.836. . . .

Also, the 1 in %1i does nothing; if Matlab sees that the number is 10 or more,
it will use two print positions anyway. So you may as well leave that one away:

% p r i n t out the remaining f r e q u e n c i e s
fpr intf (’ f o r k = %.0 f , omega%i equa l s : %5.2 f \n ’ , . . .

k , 2 , omega2)
fpr intf (’ f o r k = %.0 f , omega%i equa l s : %5.2 f \n ’ , . . .

k , 3 , omega3)
fpr intf (’ f o r k = %.0 f , omega%i equa l s : %5.2 f \n ’ , . . .

k , 4 , omega4)

17

f o r k = 2 , omega2 equa l s : 4 .82
f o r k = 2 , omega3 equa l s : 7 .92
f o r k = 2 , omega4 equa l s : 11 .04

Note that the decimal points now line up.

ADDITIONAL REMARKS
To find the location of the smallest or largest value of a function instead of a zero
value, you could find a zero for the derivative. Alternatively, you can directly
search for a minimum by using Matlab function fminbnd instead of fzero. To
search for a maximum, search for a minimum of minus the function.

If you have more than one equation for more than one variable, things get
messier. Try fsolve or fminunc.

18

	LESSON SUMMARY
	Key areas of the online book
	THE PROBLEM WE WANT TO SOLVE
	THE ERROR IN THE EQUATION AS A FUNCTION
	Play a bit with the function
	PLOT TO UNDERSTAND THE PROBLEM BETTER
	Plot the error for 0 < omega < 12
	Try improving the plot
	Try, try, try again
	ACCURATE VALUES FOR THE FREQUENCIES
	Finding the value of the lowest frequency
	How about the other frequencies?
	Find a lot more frequencies now
	HOW ABOUT IF THE STIFFNESS IS NOT 1??
	Add the stiffness k as a function argument
	Using an anonymous function
	Read: More on @: function handles and quick functions
	PRINT OUT THE FREQUENCIES NICELY
	ADDITIONAL REMARKS

