load lecture4.mat
plot(timeMeasuredN,TempMeasuredN,'ok',timePlot,TempExactPlot,'--k',timePlot,TempLinearNPlot,'b',timePlot,TempSplineNPlot,'r')
polyfit(timeMeasuredN,TempMeasuredN,1)
ans =
   -6.3385   12.4480
coefLinFit=polyfit(timeMeasuredN,TempMeasuredN,1)
coefLinFit =
   -6.3385   12.4480
TempLinFitPlot=polyval(coefLinFit,timePlot)
TempLinFitPlot =
  Columns 1 through 5
   12.4480   12.4057   12.3635   12.3212   12.2790
  Columns 6 through 10
   12.2367   12.1945   12.1522   12.1100   12.0677
  Columns 11 through 15
   12.0254   11.9832   11.9409   11.8987   11.8564
  Columns 16 through 20
   11.8142   11.7719   11.7296   11.6874   11.6451
  Columns 21 through 25
   11.6029   11.5606   11.5184   11.4761   11.4338
  Columns 26 through 30
   11.3916   11.3493   11.3071   11.2648   11.2226
  Columns 31 through 35
   11.1803   11.1381   11.0958   11.0535   11.0113
  Columns 36 through 40
   10.9690   10.9268   10.8845   10.8423   10.8000
  Columns 41 through 45
   10.7577   10.7155   10.6732   10.6310   10.5887
  Columns 46 through 50
   10.5465   10.5042   10.4620   10.4197   10.3774
  Columns 51 through 55
   10.3352   10.2929   10.2507   10.2084   10.1662
  Columns 56 through 60
   10.1239   10.0816   10.0394    9.9971    9.9549
  Columns 61 through 65
    9.9126    9.8704    9.8281    9.7858    9.7436
  Columns 66 through 70
    9.7013    9.6591    9.6168    9.5746    9.5323
  Columns 71 through 75
    9.4901    9.4478    9.4055    9.3633    9.3210
  Columns 76 through 80
    9.2788    9.2365    9.1943    9.1520    9.1097
  Columns 81 through 85
    9.0675    9.0252    8.9830    8.9407    8.8985
  Columns 86 through 90
    8.8562    8.8140    8.7717    8.7294    8.6872
  Columns 91 through 95
    8.6449    8.6027    8.5604    8.5182    8.4759
  Columns 96 through 100
    8.4336    8.3914    8.3491    8.3069    8.2646
  Columns 101 through 105
    8.2224    8.1801    8.1378    8.0956    8.0533
  Columns 106 through 110
    8.0111    7.9688    7.9266    7.8843    7.8421
  Columns 111 through 115
    7.7998    7.7575    7.7153    7.6730    7.6308
  Columns 116 through 120
    7.5885    7.5463    7.5040    7.4617    7.4195
  Columns 121 through 125
    7.3772    7.3350    7.2927    7.2505    7.2082
  Columns 126 through 130
    7.1660    7.1237    7.0814    7.0392    6.9969
  Columns 131 through 135
    6.9547    6.9124    6.8702    6.8279    6.7856
  Columns 136 through 140
    6.7434    6.7011    6.6589    6.6166    6.5744
  Columns 141 through 145
    6.5321    6.4898    6.4476    6.4053    6.3631
  Columns 146 through 150
    6.3208    6.2786    6.2363    6.1941    6.1518
  Columns 151 through 155
    6.1095    6.0673    6.0250    5.9828    5.9405
  Columns 156 through 160
    5.8983    5.8560    5.8137    5.7715    5.7292
  Columns 161 through 165
    5.6870    5.6447    5.6025    5.5602    5.5180
  Columns 166 through 170
    5.4757    5.4334    5.3912    5.3489    5.3067
  Columns 171 through 175
    5.2644    5.2222    5.1799    5.1376    5.0954
  Columns 176 through 180
    5.0531    5.0109    4.9686    4.9264    4.8841
  Columns 181 through 185
    4.8418    4.7996    4.7573    4.7151    4.6728
  Columns 186 through 190
    4.6306    4.5883    4.5461    4.5038    4.4615
  Columns 191 through 195
    4.4193    4.3770    4.3348    4.2925    4.2503
  Columns 196 through 200
    4.2080    4.1657    4.1235    4.0812    4.0390
  Columns 201 through 205
    3.9967    3.9545    3.9122    3.8700    3.8277
  Columns 206 through 210
    3.7854    3.7432    3.7009    3.6587    3.6164
  Columns 211 through 215
    3.5742    3.5319    3.4896    3.4474    3.4051
  Columns 216 through 220
    3.3629    3.3206    3.2784    3.2361    3.1939
  Columns 221 through 225
    3.1516    3.1093    3.0671    3.0248    2.9826
  Columns 226 through 230
    2.9403    2.8981    2.8558    2.8135    2.7713
  Columns 231 through 235
    2.7290    2.6868    2.6445    2.6023    2.5600
  Columns 236 through 240
    2.5177    2.4755    2.4332    2.3910    2.3487
  Columns 241 through 245
    2.3065    2.2642    2.2220    2.1797    2.1374
  Columns 246 through 250
    2.0952    2.0529    2.0107    1.9684    1.9262
  Columns 251 through 255
    1.8839    1.8416    1.7994    1.7571    1.7149
  Columns 256 through 260
    1.6726    1.6304    1.5881    1.5459    1.5036
  Columns 261 through 265
    1.4613    1.4191    1.3768    1.3346    1.2923
  Columns 266 through 270
    1.2501    1.2078    1.1655    1.1233    1.0810
  Columns 271 through 275
    1.0388    0.9965    0.9543    0.9120    0.8697
  Columns 276 through 280
    0.8275    0.7852    0.7430    0.7007    0.6585
  Columns 281 through 285
    0.6162    0.5740    0.5317    0.4894    0.4472
  Columns 286 through 290
    0.4049    0.3627    0.3204    0.2782    0.2359
  Columns 291 through 295
    0.1936    0.1514    0.1091    0.0669    0.0246
  Columns 296 through 300
   -0.0176   -0.0599   -0.1021   -0.1444   -0.1867
  Column 301
   -0.2289
TempLinFitPlot=polyval(coefLinFit,timePlot);
plot(timeMeasuredN,TempMeasuredN,'ok',timePlot,TempExactPlot,'--k',timePlot,TempLinFitPlot,'y')
coefQuadFit=polyfit(timeMeasuredN,TempMeasuredN,2)
coefQuadFit =
    2.7259  -11.7902   14.2187
TempQuadFitPlot=polyval(coefQuadFit,timePlot);
plot(timeMeasuredN,TempMeasuredN,'ok',timePlot,TempExactPlot,'--k',timePlot,TempQuadFitPlot,'c')
coefQuartFit=polyfit(timeMeasuredN,TempMeasuredN,4)
coefQuartFit =
    1.1746   -5.3555   10.6889  -15.9337   14.6908
TempQuartFitPlot=polyval(coefQuartFit,timePlot);
plot(timeMeasuredN,TempMeasuredN,'ok',timePlot,TempExactPlot,'--k',timePlot,TempQuartFitPlot,'c')
coefCubeFit=polyfit(timeMeasuredN,TempMeasuredN,3)
coefCubeFit =
   -0.6573    4.6977  -13.3478   14.4617
TempCubeFitPlot=polyval(coefCubeFit,timePlot);
plot(timeMeasuredN,TempMeasuredN,'ok',timePlot,TempExactPlot,'--k',timePlot,TempCubFitPlot,'m')
{Undefined function or variable 'TempCubFitPlot'.} 
plot(timeMeasuredN,TempMeasuredN,'ok',timePlot,TempExactPlot,'--k',timePlot,TempCubeFitPlot,'m')
errQuartFitMax=max(abs(TempQuartFitPlot-TempExactFunPlot))
{Undefined function or variable 'TempExactFunPlot'.} 
errQuartFitMax=max(abs(TempQuartFitPlot-TempExactPlot))
errQuartFitMax =
    0.4684
errLinearNMax
errLinearNMax =
    1.7657
errSplineNMax
errSplineNMax =
    2.0296
qExact=TempExactFun(2)/(-1.1)-TempExactFun(0)/(-1.1)
qExact =
   11.8021
integral(TempExactFun,0,2)
ans =
   11.8021
format long
integral(TempExactFun,0,2)
ans =
  11.802067170827206
qExact
qExact =
  11.802067170827204
integral(@(t) interp1(timeMeasured,TempMeasured,t),0,2)
ans =
  12.095000369254418
integral(@(t) spline(timeMeasured,TempMeasured,t),0,2)
ans =
  11.803333333333333
integral(@(t) polyval(coefLinFit,t),0,2)
ans =
  12.219084009333578
integral(@(t) polyval(coefQuadFit,t),0,2)
ans =
  12.125891672886226
integral(@(t) polyval(coefQuartFit,t),0,2)
ans =
  12.113011014231544
integral(@(t) spline(timeMeasuredN,TempMeasuredN,t),0,2)
ans =
  12.171005745875888
plot(timeMeasuredN,TempMeasuredN,'ok',timePlot,TempExactPlot,'--k',timePlot,TempLinearNPlot,'b',timePlot,TempSplineNPlot,'r')
plot(timeMeasuredN,TempMeasuredN,'ok',timePlot,TempExactPlot,'--k',timePlot,TempLinearPlot,'b',timePlot,TempSplinePlot,'r')
plot(timeMeasured,TempMeasured,'ok',timePlot,TempExactPlot,'--k',timePlot,TempLinearPlot,'b',timePlot,TempSplinePlot,'r')
derCoefLinFit=polyder(CoefLinFit)
{Undefined function or variable 'CoefLinFit'.} 
derCoefLinFit=polyder(coefLinFit)
derCoefLinFit =
  -6.338460399026184
coefLinFit
coefLinFit =
  -6.338460399026184  12.448002403692973
coefQuadFit
coefQuadFit =
  Columns 1 through 2
   2.725875841084907 -11.790212081196001
  Column 3
  14.218656796192571
derCoefQuadFit=polyder(coefQuadFit)
derCoefQuadFit =
   5.451751682169815 -11.790212081196001
coefQuartFit
coefQuartFit =
  Columns 1 through 2
   1.174559586955105  -5.355528078839982
  Columns 3 through 4
  10.688914570008901 -15.933691226836668
  Column 5
  14.690776120030867
derCoefQuartFit=polyder(coefQuartFit)
derCoefQuartFit =
  Columns 1 through 2
   4.698238347820421 -16.066584236519947
  Columns 3 through 4
  21.377829140017802 -15.933691226836668
derExactPlot=-1.1*TempExactPlot;
derLinFitPlot=polyval(derCoefLinFit,timePlot)
derLinFitPlot =
  Columns 1 through 2
  -6.338460399026184  -6.338460399026184
  Columns 3 through 4
  -6.338460399026184  -6.338460399026184
  Columns 5 through 6
  -6.338460399026184  -6.338460399026184
  Columns 7 through 8
  -6.338460399026184  -6.338460399026184
  Columns 9 through 10
  -6.338460399026184  -6.338460399026184
  Columns 11 through 12
  -6.338460399026184  -6.338460399026184
  Columns 13 through 14
  -6.338460399026184  -6.338460399026184
  Columns 15 through 16
  -6.338460399026184  -6.338460399026184
  Columns 17 through 18
  -6.338460399026184  -6.338460399026184
  Columns 19 through 20
  -6.338460399026184  -6.338460399026184
  Columns 21 through 22
  -6.338460399026184  -6.338460399026184
  Columns 23 through 24
  -6.338460399026184  -6.338460399026184
  Columns 25 through 26
  -6.338460399026184  -6.338460399026184
  Columns 27 through 28
  -6.338460399026184  -6.338460399026184
  Columns 29 through 30
  -6.338460399026184  -6.338460399026184
  Columns 31 through 32
  -6.338460399026184  -6.338460399026184
  Columns 33 through 34
  -6.338460399026184  -6.338460399026184
  Columns 35 through 36
  -6.338460399026184  -6.338460399026184
  Columns 37 through 38
  -6.338460399026184  -6.338460399026184
  Columns 39 through 40
  -6.338460399026184  -6.338460399026184
  Columns 41 through 42
  -6.338460399026184  -6.338460399026184
  Columns 43 through 44
  -6.338460399026184  -6.338460399026184
  Columns 45 through 46
  -6.338460399026184  -6.338460399026184
  Columns 47 through 48
  -6.338460399026184  -6.338460399026184
  Columns 49 through 50
  -6.338460399026184  -6.338460399026184
  Columns 51 through 52
  -6.338460399026184  -6.338460399026184
  Columns 53 through 54
  -6.338460399026184  -6.338460399026184
  Columns 55 through 56
  -6.338460399026184  -6.338460399026184
  Columns 57 through 58
  -6.338460399026184  -6.338460399026184
  Columns 59 through 60
  -6.338460399026184  -6.338460399026184
  Columns 61 through 62
  -6.338460399026184  -6.338460399026184
  Columns 63 through 64
  -6.338460399026184  -6.338460399026184
  Columns 65 through 66
  -6.338460399026184  -6.338460399026184
  Columns 67 through 68
  -6.338460399026184  -6.338460399026184
  Columns 69 through 70
  -6.338460399026184  -6.338460399026184
  Columns 71 through 72
  -6.338460399026184  -6.338460399026184
  Columns 73 through 74
  -6.338460399026184  -6.338460399026184
  Columns 75 through 76
  -6.338460399026184  -6.338460399026184
  Columns 77 through 78
  -6.338460399026184  -6.338460399026184
  Columns 79 through 80
  -6.338460399026184  -6.338460399026184
  Columns 81 through 82
  -6.338460399026184  -6.338460399026184
  Columns 83 through 84
  -6.338460399026184  -6.338460399026184
  Columns 85 through 86
  -6.338460399026184  -6.338460399026184
  Columns 87 through 88
  -6.338460399026184  -6.338460399026184
  Columns 89 through 90
  -6.338460399026184  -6.338460399026184
  Columns 91 through 92
  -6.338460399026184  -6.338460399026184
  Columns 93 through 94
  -6.338460399026184  -6.338460399026184
  Columns 95 through 96
  -6.338460399026184  -6.338460399026184
  Columns 97 through 98
  -6.338460399026184  -6.338460399026184
  Columns 99 through 100
  -6.338460399026184  -6.338460399026184
  Columns 101 through 102
  -6.338460399026184  -6.338460399026184
  Columns 103 through 104
  -6.338460399026184  -6.338460399026184
  Columns 105 through 106
  -6.338460399026184  -6.338460399026184
  Columns 107 through 108
  -6.338460399026184  -6.338460399026184
  Columns 109 through 110
  -6.338460399026184  -6.338460399026184
  Columns 111 through 112
  -6.338460399026184  -6.338460399026184
  Columns 113 through 114
  -6.338460399026184  -6.338460399026184
  Columns 115 through 116
  -6.338460399026184  -6.338460399026184
  Columns 117 through 118
  -6.338460399026184  -6.338460399026184
  Columns 119 through 120
  -6.338460399026184  -6.338460399026184
  Columns 121 through 122
  -6.338460399026184  -6.338460399026184
  Columns 123 through 124
  -6.338460399026184  -6.338460399026184
  Columns 125 through 126
  -6.338460399026184  -6.338460399026184
  Columns 127 through 128
  -6.338460399026184  -6.338460399026184
  Columns 129 through 130
  -6.338460399026184  -6.338460399026184
  Columns 131 through 132
  -6.338460399026184  -6.338460399026184
  Columns 133 through 134
  -6.338460399026184  -6.338460399026184
  Columns 135 through 136
  -6.338460399026184  -6.338460399026184
  Columns 137 through 138
  -6.338460399026184  -6.338460399026184
  Columns 139 through 140
  -6.338460399026184  -6.338460399026184
  Columns 141 through 142
  -6.338460399026184  -6.338460399026184
  Columns 143 through 144
  -6.338460399026184  -6.338460399026184
  Columns 145 through 146
  -6.338460399026184  -6.338460399026184
  Columns 147 through 148
  -6.338460399026184  -6.338460399026184
  Columns 149 through 150
  -6.338460399026184  -6.338460399026184
  Columns 151 through 152
  -6.338460399026184  -6.338460399026184
  Columns 153 through 154
  -6.338460399026184  -6.338460399026184
  Columns 155 through 156
  -6.338460399026184  -6.338460399026184
  Columns 157 through 158
  -6.338460399026184  -6.338460399026184
  Columns 159 through 160
  -6.338460399026184  -6.338460399026184
  Columns 161 through 162
  -6.338460399026184  -6.338460399026184
  Columns 163 through 164
  -6.338460399026184  -6.338460399026184
  Columns 165 through 166
  -6.338460399026184  -6.338460399026184
  Columns 167 through 168
  -6.338460399026184  -6.338460399026184
  Columns 169 through 170
  -6.338460399026184  -6.338460399026184
  Columns 171 through 172
  -6.338460399026184  -6.338460399026184
  Columns 173 through 174
  -6.338460399026184  -6.338460399026184
  Columns 175 through 176
  -6.338460399026184  -6.338460399026184
  Columns 177 through 178
  -6.338460399026184  -6.338460399026184
  Columns 179 through 180
  -6.338460399026184  -6.338460399026184
  Columns 181 through 182
  -6.338460399026184  -6.338460399026184
  Columns 183 through 184
  -6.338460399026184  -6.338460399026184
  Columns 185 through 186
  -6.338460399026184  -6.338460399026184
  Columns 187 through 188
  -6.338460399026184  -6.338460399026184
  Columns 189 through 190
  -6.338460399026184  -6.338460399026184
  Columns 191 through 192
  -6.338460399026184  -6.338460399026184
  Columns 193 through 194
  -6.338460399026184  -6.338460399026184
  Columns 195 through 196
  -6.338460399026184  -6.338460399026184
  Columns 197 through 198
  -6.338460399026184  -6.338460399026184
  Columns 199 through 200
  -6.338460399026184  -6.338460399026184
  Columns 201 through 202
  -6.338460399026184  -6.338460399026184
  Columns 203 through 204
  -6.338460399026184  -6.338460399026184
  Columns 205 through 206
  -6.338460399026184  -6.338460399026184
  Columns 207 through 208
  -6.338460399026184  -6.338460399026184
  Columns 209 through 210
  -6.338460399026184  -6.338460399026184
  Columns 211 through 212
  -6.338460399026184  -6.338460399026184
  Columns 213 through 214
  -6.338460399026184  -6.338460399026184
  Columns 215 through 216
  -6.338460399026184  -6.338460399026184
  Columns 217 through 218
  -6.338460399026184  -6.338460399026184
  Columns 219 through 220
  -6.338460399026184  -6.338460399026184
  Columns 221 through 222
  -6.338460399026184  -6.338460399026184
  Columns 223 through 224
  -6.338460399026184  -6.338460399026184
  Columns 225 through 226
  -6.338460399026184  -6.338460399026184
  Columns 227 through 228
  -6.338460399026184  -6.338460399026184
  Columns 229 through 230
  -6.338460399026184  -6.338460399026184
  Columns 231 through 232
  -6.338460399026184  -6.338460399026184
  Columns 233 through 234
  -6.338460399026184  -6.338460399026184
  Columns 235 through 236
  -6.338460399026184  -6.338460399026184
  Columns 237 through 238
  -6.338460399026184  -6.338460399026184
  Columns 239 through 240
  -6.338460399026184  -6.338460399026184
  Columns 241 through 242
  -6.338460399026184  -6.338460399026184
  Columns 243 through 244
  -6.338460399026184  -6.338460399026184
  Columns 245 through 246
  -6.338460399026184  -6.338460399026184
  Columns 247 through 248
  -6.338460399026184  -6.338460399026184
  Columns 249 through 250
  -6.338460399026184  -6.338460399026184
  Columns 251 through 252
  -6.338460399026184  -6.338460399026184
  Columns 253 through 254
  -6.338460399026184  -6.338460399026184
  Columns 255 through 256
  -6.338460399026184  -6.338460399026184
  Columns 257 through 258
  -6.338460399026184  -6.338460399026184
  Columns 259 through 260
  -6.338460399026184  -6.338460399026184
  Columns 261 through 262
  -6.338460399026184  -6.338460399026184
  Columns 263 through 264
  -6.338460399026184  -6.338460399026184
  Columns 265 through 266
  -6.338460399026184  -6.338460399026184
  Columns 267 through 268
  -6.338460399026184  -6.338460399026184
  Columns 269 through 270
  -6.338460399026184  -6.338460399026184
  Columns 271 through 272
  -6.338460399026184  -6.338460399026184
  Columns 273 through 274
  -6.338460399026184  -6.338460399026184
  Columns 275 through 276
  -6.338460399026184  -6.338460399026184
  Columns 277 through 278
  -6.338460399026184  -6.338460399026184
  Columns 279 through 280
  -6.338460399026184  -6.338460399026184
  Columns 281 through 282
  -6.338460399026184  -6.338460399026184
  Columns 283 through 284
  -6.338460399026184  -6.338460399026184
  Columns 285 through 286
  -6.338460399026184  -6.338460399026184
  Columns 287 through 288
  -6.338460399026184  -6.338460399026184
  Columns 289 through 290
  -6.338460399026184  -6.338460399026184
  Columns 291 through 292
  -6.338460399026184  -6.338460399026184
  Columns 293 through 294
  -6.338460399026184  -6.338460399026184
  Columns 295 through 296
  -6.338460399026184  -6.338460399026184
  Columns 297 through 298
  -6.338460399026184  -6.338460399026184
  Columns 299 through 300
  -6.338460399026184  -6.338460399026184
  Column 301
  -6.338460399026184
derLinFitPlot=polyval(derCoefLinFit,timePlot);
derQuadFitPlot=polyval(derCoefQuadFit,timePlot);
derQuartFitPlot=polyval(derCoefQuartFit,timePlot);
plot(timePlot,derTempExact,'--k',timePlot,derLinFitPlot,'y',timeplot,derQuadFitPlot,'c',timeplot,derQuartFitPlot,'m')
{Undefined function or variable 'derTempExact'.} 
plot(timePlot,derExactPlot,'--k',timePlot,derLinFitPlot,'y',timeplot,derQuadFitPlot,'c',timeplot,derQuartFitPlot,'m')
{Undefined function or variable 'timeplot'.} 
plot(timePlot,derExactPlot,'--k',timePlot,derLinFitPlot,'y',timeplot,derQuadFitPlot,'c',timePlot,derQuartFitPlot,'m')
{Undefined function or variable 'timeplot'.} 
plot(timePlot,derExactPlot,'--k',timePlot,derLinFitPlot,'y',timePlot,derQuadFitPlot,'c',timePlot,derQuartFitPlot,'m')
timeDesired=3
timeDesired =
     3
TempLinear=interp1(timeMeasured,TempMeasured,timeDesired,'linear','extrap')
TempLinear =
  -0.739999999999999
TempExact
TempExact =
   0.538494244058104
TempSpline=spline(timeMeasuredN,TempMeasuredN,timeDesired)
TempSpline =
    -8.348353902013725e+03
TempSpline=spline(timeMeasured,TempMeasured,timeDesired)
TempSpline =
  -0.080000000000008
TempSplineN=spline(timeMeasuredN,TempMeasuredN,timeDesired)
TempSplineN =
    -8.348353902013725e+03
TempLinearN=interp1(timeMeasuredN,TempMeasuredN,timeDesired,'linear','extrap')
TempLinearN =
 -31.116374883265770
polyval(coefLinFit,3)
ans =
  -6.567378793385581
polyval(coefQuadFit,3)
ans =
   3.380903122368734
polyval(coefQuartFit,3)
ans =
  13.630001984284986
save lecture5

help polyval
 <strong>polyval</strong> Evaluate polynomial.
    Y = <strong>polyval</strong>(P,X) returns the value of a polynomial P evaluated at X. P
    is a vector of length N+1 whose elements are the coefficients of the
    polynomial in descending powers.
 
        Y = P(1)*X^N + P(2)*X^(N-1) + ... + P(N)*X + P(N+1)
 
    If X is a matrix or vector, the polynomial is evaluated at all
    points in X.  See POLYVALM for evaluation in a matrix sense.
 
    [Y,DELTA] = <strong>polyval</strong>(P,X,S) uses the optional output structure S created
    by POLYFIT to generate prediction error estimates DELTA.  DELTA is an
    estimate of the standard deviation of the error in predicting a future
    observation at X by P(X).
 
    If the coefficients in P are least squares estimates computed by
    POLYFIT, and the errors in the data input to POLYFIT are independent,
    normal, with constant variance, then Y +/- DELTA will contain at least
    50% of future observations at X.
 
    Y = <strong>polyval</strong>(P,X,[],MU) or [Y,DELTA] = <strong>polyval</strong>(P,X,S,MU) uses XHAT =
    (X-MU(1))/MU(2) in place of X. The centering and scaling parameters MU
    are optional output computed by POLYFIT.
 
    Example:
       Evaluate the polynomial p(x) = 3x^2+2x+1 at x = 5,7, and 9:
 
       p = [3 2 1];
       polyval(p,[5 7 9])%
 
    Class support for inputs P,X,S,MU:
       float: double, single
 
    See also <a href="matlab:help polyfit">polyfit</a>, <a href="matlab:help polyvalm">polyvalm</a>.

    <a href="matlab:doc polyval">Reference page for polyval</a>
    <a href="matlab:matlab.internal.language.introspective.overloads.displayOverloads('polyval')">Other functions named polyval</a>