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Initialization

% reduce need l e s s wh i te space
format compact
% reduce i r r i t a t i o n s
more o f f
% s t a r t a d iary
%diary l ec tureN . t x t

FOR LOOPS
For loops are useful if you want to do the same sort of things multiple or many
times.

A very simple loop

disp ( ’ ’ )

disp ( ’ Let ’ ’ s t ry i t ! ’ )
for counter =1:3

disp ( ’Matlab i s g rea t ! ’ )
end
disp ( ’Done . ’ )
disp ( ’ Note how the " execut ion po in t e r " has moved ! ’ )

Let ’ s t ry i t !
Matlab i s g rea t !
Matlab i s g rea t !
Matlab i s g rea t !
Done .
Note how the " execut ion po in t e r " has moved !
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A slightly more elaborate version

disp ( ’ ’ )

% se t a repea t count
counterMax=5

% CREATE A TEST1.M SCRIPT FOR THE NEXT CODE:

% pr in t out the message
fpr intf ( ’Remember f a c t %i about Matlab : \ n ’ , counterMax )
for counter=1: counterMax

fpr intf ( ’%i : Matlab i s g rea t ! \ n ’ , counter )
end
disp ( ’Done . Try another value f o r counterMax ! ’ )

% Note how Matlab processed those l i n e s . At the " f o r "
% command i t d id ∗not∗ s e t " counter " equa l to the vec to r
% [1 2 3 4 5 ] . Ins t ead i t s e t counter equa l to the f i r s t
% number , 1 . Then Matlab went on to the f p r i n t
% statement . But when i t saw the " end " command , i t
% jumped back to the " f o r " command , and s e t counter equa l
% to the second number , 2 . And i t repea ted t h e s e s t e p s
% fo r 3 , 4 , and 5 . But when i t jumped back to the " f o r "
% command a f t e r the 5 , t h e r e were no more numbers . So
% Matlab then jumped pas t the " end " s ta tement and went on
% with the " d i sp ( ’ done ’ ) " and beyond .

counterMax = 5
Remember f a c t 5 about Matlab :
1 : Matlab i s g rea t !
2 : Matlab i s g rea t !
3 : Matlab i s g rea t !
4 : Matlab i s g rea t !
5 : Matlab i s g rea t !
Done . Try another value f o r counterMax !

Handle repetitive operations neatly
Remember how messy it was in lesson2 to find and neatly print four frequencies
for the flexibly suspended string? With a for loop we can easily find and print
10! Or much more still.

disp ( ’ ’ )
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% de f i n e func t i on freqEq , the condensed ve r s i on
freqEq=@(omega , k ) sin ( omega ) + k∗omega∗cos ( omega ) ;

% se t the f l e x i b i l i t y
k=1

% se t how many f r e qu enc i e s we want to p r i n t out
nMax=10

% CREATE A TEST2.M SCRIPT FOR THE NEXT CODE:

% pr in t out the f i r s t 10 f r e qu enc i e s
for n=1:nMax

guess=(n−0.5)∗pi ;
omega=fzero (@(omega ) freqEq (omega , k ) , guess ) ;
fpr intf ( . . .

’ Frequency %2i : guess : %6.3 f ; exact : %6.3 f \n ’ , . . .
n , guess , omega )

end
disp ( ’Done . Try another value f o r nMax ! ’ )

k = 1
nMax = 10
Frequency 1 : guess : 1 . 5 7 1 ; exact : 2 .029
Frequency 2 : guess : 4 . 7 1 2 ; exact : 4 .913
Frequency 3 : guess : 7 . 8 5 4 ; exact : 7 .979
Frequency 4 : guess : 1 0 . 9 96 ; exact : 11 .086
Frequency 5 : guess : 1 4 . 1 37 ; exact : 14 .207
Frequency 6 : guess : 1 7 . 2 79 ; exact : 17 .336
Frequency 7 : guess : 2 0 . 4 20 ; exact : 20 .469
Frequency 8 : guess : 2 3 . 5 62 ; exact : 23 .604
Frequency 9 : guess : 2 6 . 7 04 ; exact : 26 .741
Frequency 10 : guess : 2 9 . 8 45 ; exact : 29 .879
Done . Try another value f o r nMax !

Forming matrices
A for loop is often a great way to generate a matrix. For example consider the
following 6× 6 matrix

4



A =


1 −1 0 0 0 0
1 −3 2 0 0 0
0 2 −5 3 0 0
0 0 3 −7 4 0
0 0 0 4 −9 5
0 0 0 0 0 1

 row number i =



1
2
3
4
5
6 = n

You might encounter such a matrix in, say solving a problem including both
conduction and convection of heat. And it might be much bigger than 6 × 6;
you could easily have n a thousand instead of 6, producing a 1000×1000 matrix,
with a million numbers in it. So in general, typing the matrix completely out
as written is not a realistic option.
Instead, note that the matrix components have some logic in it. First of all,
note that almost all components are zero. So if you start the matrix off as all
zeros, like in

A = zeros (n)

then you get most components correct right off the bat. You now only need to
worry about fixing up the nonzero components.
Next note that there is a definite logic in the nonzero coefficients. Or at least
there is if you ignore the first row, i = 1, and the last row, i = n. The
intermediate rows, from i = 2 to n− 1, all have a similar structure. To describe
this mathematically, first note that on the "main diagonal", which runs from top
left corner to bottom right corner, all components are negative.
What distinguishes this main diagonal mathematically is that on it, the "column
number" j equals the row number i. And remember that in Matlab you can
address the matrix component with row number i and column number j as
A(i,j). Mathematicians would indicate that same component as ai,j ; in other
words they use a lower case letter and subscripts rather than upper case and
parentheses. The bottom line is that in Matlab the component on the main
diagonal in row i is indicated by A(i,i). In mathematics, that is ai,i. Note
also that the components ai,i on the main diagonal are all negative.
Next note that the components immediately to the right of the main diagonal
have the column number j one greater than i. So these components can be writ-
ten as ai,i+1. These components form what is called the "first superdiagonal".
Now note that the values of these components are very simple: they are simply
equal to the row number i:

ai,i+1 = i

Next note the components immediately to the left of the main diagonal. These
components, with column number j = i − 1, are called the first subdiagonal.
Note that their values are also simple. They are just one smaller than the row
number:

ai,i−1 = i− 1
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Finally, the components on the main diagonal equal minus the sum of the sub-
diagonal and superdiagonal components, so

ai,i = −(2 ∗ i− 1)
We can use the above three formulae to put all the correct nonzero components
in the intermediate rows in matrix A. But we will have to do rows 1 and n
separately, by looking at the matrix as written out above.

disp ( ’ ’ )

% s i z e o f the matrix to c r ea t e
n=6

% CREATE A TEST3.M SCRIPT FOR THE NEXT CODE:

% i n i t i a l i z e the matrix as a l l z e ro s
A=zeros (n)

% se t the nonzero components o f f i r s t row i=1
i =1;
A( i , i )=1;
A( i , i +1)=−1;
A=A

% se t the nonzero components o f the in t e rmed ia t e rows
for i =2:n−1

A( i , i −1)=i −1;
A( i , i )=−(2∗ i −1) ;
A( i , i +1)=i ;

end
A=A

% se t the nonzero components o f l a s t row i=n
i=n ;
A( i , i )=1;
A=A
fpr intf ( ’Done c r e a t i n g matrix A f o r n = %i . \ n ’ ,n )
disp ( ’Try another va lue f o r n ! ’ )

n = 6
A =

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
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0 0 0 0 0 0
0 0 0 0 0 0

A =
1 −1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

A =
1 −1 0 0 0 0
1 −3 2 0 0 0
0 2 −5 3 0 0
0 0 3 −7 4 0
0 0 0 4 −9 5
0 0 0 0 0 0

A =
1 −1 0 0 0 0
1 −3 2 0 0 0
0 2 −5 3 0 0
0 0 3 −7 4 0
0 0 0 4 −9 5
0 0 0 0 0 1

Done c r e a t i n g matrix A f o r n = 6 .
Try another va lue f o r n !

Another example matrix, using a nested loop
Remember the following matrix from lesson 5?

Asing =

 1 2 3
4 5 6
7 8 9

 row number i =

 1
2
3 = n

In that lesson we typed the matrix completely out as

ASing = [1 2 3 ;
4 5 6 ;
7 8 9 ]

But with for loops, we can create it in a more systematic way that allows bigger
matrices like that to be formed.
To do so, first note that in any given row, when the column number j increases
by 1, then the corresponding component ai,j :

ai,j = j + something rather
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increases by 1. By looking at the first components of the first few rows, you can
quickly identify "something rather": it is zero for row 1, and increases by n each
time the row number increases by 1, So "something rather" must be (i − 1)n,
and so:

ai,j = j + (i− 1)n

The new programming thing is that in this case, we must look at not just all
possible values of row number i, but also of column number j. So we need what
is called a "nested" for loop.

disp ( ’ ’ )

% s i z e o f the matrix to c r ea t e
n=3

% CREATE A TEST4.M SCRIPT FOR THE NEXT CODE:

% crea t e the co r r e c t amount o f s t o rage f o r the matrix
disp ( ’ Ensure that the s i z e o f the matrix i s r i g h t ’ )
ASing=zeros (n) ;
% Note : Without the above l i ne , the ∗ f i r s t time∗ around
% th in g s would s t i l l work : Matlab would s t a r t wi th a
% zero−s i z e matrix and increa se i t s s i z e as needed each
% time you add an component . But t h e s e s i z e i n c r ea s e s
% would be ex t reme ly i n e f f i c i e n t . Also , i f you
% sub s e quen t l y t r i e d a sma l l e r va lue o f n , Matlab would
% not reduce the matrix to the new sma l l e r s i z e ,
% producing the wrong r e s u l t .

% loop over the rows
for i =1:n

% loop over the columns
for j =1:n

% g i v e the r i g h t va lue
ASing ( i , j )=j+( i −1)∗n ;

end
end

% pr in t i t out
ASing=ASing
fpr intf ( ’Done c r e a t i n g matrix A f o r n = %i \n ’ ,n )

% check t ha t i t i s s t i l l s i n gu l a r
condASing=cond(ASing )
disp ( ’Yes , s t i l l s i n gu l a r . ’ )
disp ( ’Try another va lue f o r n ! ’ )
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n = 3
Ensure that the s i z e o f the matrix i s r i g h t
ASing =

1 2 3
4 5 6
7 8 9

Done c r e a t i n g matrix A f o r n = 3
condASing = 6.0262 e+16
Yes , s t i l l s i n gu l a r .
Try another va lue f o r n !

Doing sums with a known limit
Let’s say that we want to evaluate the sum S given by

S = 1
12 + 1

22 + 1
32 + . . .+ 1

10002

A for loop from 1 to 1000 will evaluate this quite nicely.
First however, we need to write the sum out mathematically with a summation
symbol:

S =
imax∑
i=1

1
i2

imax = 1000

because that is the way it is programmed.

disp ( ’ ’ )

% se t the number o f the l a s t term to sum
iMax=1000

% CREATE A TEST5.M SCRIPT FOR THE NEXT CODE:

% i n i t i a l i z e the sum to zero (no terms summed ye t )
t o t a l =0;

% in a f o r loop from 1 to 1000 , add each term in turn
for i =1:iMax

% the term t ( i ) to add to sum
t i =1/ i ^2 ;
% the new va lue o f sum i s the prev ious va lue p l u s t i
t o t a l=t o t a l+t i ;

end
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% pr in t out the ob ta ined sum
t o t a l=t o t a l
disp ( ’ ( This should be l e s s than 1 .6449) ’ )
disp ( ’Try another va lue f o r iMax ! ’ )

iMax = 1000
t o t a l = 1.6439
( This should be l e s s than 1 .6449)
Try another va lue f o r iMax !

Summing a Taylor series
Not all mathematical functions are provided by Matlab, or any numerical soft-
ware, in canned form. When you encounter such a function, one option to
evaluate it is to sum its Taylor series. (That assumes that you know the Taylor
series, but usually you do. For example, the function might be the integral of a
function whose Taylor series you can easily find.)
As an example let’s evaluate ex by summing its Taylor series. (We will ignore
the fact that you could get the value in Matlab much more simply as exp(x).
Instead we will use exp(x) to check the error in our result)
The Taylor series of ex is according to calculus:

ex = 1 + x1

1! + x2

2! + x3

3! + . . .

Writing this using a summation symbol gives

ex =
∞∑

i=0

xi

i!

Note also that we cannot really sum infinitely many terms. We will have to stop
summing at some large value, call it imax of i.

disp ( ’ ’ )

% se t the x va lue at which we want the Taylor s e r i e s
x=1

% se t the number o f terms at which to s top summing
iMax=10

% COPY TEST5.M TO TEST6.M FOR THE NEXT CODE:

% i n i t i a l i z e the sum to term t (0)
i =0;
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t i =1;
t o t a l=t i ;

% loop to add iMax more terms to the sum
for i =1:iMax

% compute term t ( i )
t i=x^ i / f a c t o r i a l ( i ) ;
% add term t ( i ) to the sum
t o t a l=t o t a l+t i ;

end

% pr in t out the ob ta ined va lue
t o t a l=t o t a l

% see how b i g the error r e a l l y i s
t o t a lE r r o r=to ta l−exp( x )
disp ( ’Done . Try other va lue s f o r x and/ or iMax ! ’ )

x = 1
iMax = 10
t o t a l = 2.7183
t o t a lE r r o r = −2.7313e−08
Done . Try other va lue s f o r x and/ or iMax !

A better way to do the Taylor series
The previous way of doing the Taylor series of ex is not ideal. For one, evaluating
xi for large values of i is a slow process for Matlab. And so is evaluating i!. And
far worse than that is that i! will readily overflow for large values of i. And so
will xi if the magnitude of x exceeds 1.
So look once more at that Taylor series:

ex = 1 + x

1 + x2

1 2 + x3

1 2 3 + . . . =
∞∑

i=0

xi

i!

Note that every term t_i in the sum, except the first, can be computed from
the previous term by multiplying that previous term by x/i:

ti = ti−1
x

i

That avoids overflow and is much more efficient for Matlab too.

disp ( ’ ’ )

% se t the x va lue at which we want the Taylor s e r i e s
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x=1

% se t the number o f terms to s top summing
iMax=10

% COPY TEST6.M TO TEST7.M FOR THE NEXT CODE:

% i n i t i a l i z e the sum to term t (0)
i =0;
t i =1;
t o t a l=t i ;

% loop to add iMax more terms to the sum
for i =1:iMax

% compute term t ( i ) from the prev ious va lue
t i=t i ∗x/ i ;
% add term t ( i ) to the sum
t o t a l=t o t a l+t i ;

end

% pr in t out the ob ta ined va lue
t o t a l=t o t a l

% see how b i g the error r e a l l y i s
t o t a lE r r o r=to ta l−exp( x )
disp ( ’Done . Try other va lue s f o r x and/ or iMax ! ’ )

x = 1
iMax = 10
t o t a l = 2.7183
t o t a lE r r o r = −2.7313e−08
Done . Try other va lue s f o r x and/ or iMax !

Save your workspace

disp ( ’ ’ )
disp ( ’ Save your workspace ! ’ )
disp ( ’And keep the t e s t ∗ .m s c r i p t s f o r now ! ’ )

Save your workspace !
And keep the t e s t ∗ .m s c r i p t s f o r now !
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IF CONSTRUCTS
An if construct is useful if you want to do some things only under specific
conditions.

A couple of very simple examples

disp ( ’ ’ )

% CREATE A TEST8.M SCRIPT FOR THE NEXT CODE:

% see whether 1 or 2 i s b i g g e r
i f 1 > 2

disp ( ’The c l a s s i s wrong , 1 i s b i gge r than 2 ! ’ )
end
i f 2 > 1

disp ( ’The c l a s s i s r i ght , 2 i s b i gge r than 1 ! ’ )
end
disp ( ’Done . ’ )

The c l a s s i s r i ght , 2 i s b i gge r than 1 !
Done .

A more sophisticated example
You can do the above much nicer with an

i f CONDITION1
DOSOMETHING1

e l s e i f CONDITION2
DOSOMETHING2

else
DOSOMETHING3

end

Note: You can have more than one elseif in a row, or none at all. But you
cannot have a space between else and if.

disp ( ’ ’ )

% COPY TEST8.M TO TEST9.M FOR THE NEXT CODE:

% see whether 1 or 2 i s b i g g e r
i f 1 > 2

disp ( ’The c l a s s i s wrong , 1 i s b i gge r than 2 ! ’ )
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e l s e i f 2 > 1
disp ( ’The c l a s s i s r i ght , 2 i s b i gge r than 1 ! ’ )

else
disp ( ’The c l a s s i s wrong , 1 i s equal to 2 ! ’ )

end
disp ( ’Done . ’ )

The c l a s s i s r i ght , 2 i s b i gge r than 1 !
Done .

Relational operators
The standard "relational operators" are

Symbol Meaning
−−−−−−−−−−−−−−−−−−−−−−−−−−−

> grea t e r
< l e s s
>= gr ea t e r or equal
<= l e s s or equal
== equal
~= not equal

disp ( ’ ’ )

% CREATE A TEST10 .M SCRIPT FOR THE NEXT CODE:

% l e t ’ s compute two numbers t ha t are rough ly the same
h a l f p i=pi /2 ;
r t2=sqrt (2 ) ;

% now see which one i s r e a l l y the b i g g e s t
i f h a l f p i > rt2

disp ( ’ p i /2 i s g r e a t e r than sq r t (2 ) ! ’ )
e l s e i f h a l f p i < rt2

disp ( ’ p i /2 i s l e s s than sq r t (2 ) ! ’ )
e l s e i f h a l f p i==rt2

disp ( ’ p i /2 i s equal to sq r t (2 ) ! ’ )
else

disp ( ’Matlab has gone crazy ! ’ )
end
disp ( ’Done . ’ )
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pi /2 i s g r e a t e r than sq r t (2 ) !
Done .

Logical operators
The standard "logical operators" are:

Symbol Meaning
−−−−−−−−−−−−−−−−−−−−−−−−−−−

~ l o g i c a l NOT
& l o g i c a l AND
| l o g i c a l OR

There is also XOR, but you rarely need it if you do normal engineering things.
The above operators are in order of precedence. Use parentheses as needed to
be safe and for readability.
If the & or | is doubled, they become short-circuiting:
For CONDITION1 && CONDITION2, if CONDITION1 is found to be false,
Matlab never looks at CONDITION2, because the combined expression is false
already.
For CONDITION1 CONDITION2, if CONDITION1 is found to be true, Mat-
lab never looks at CONDITION2 because the combined expression is true al-
ready.

disp ( ’ ’ )

% CREATE A TEST11 .M SCRIPT FOR THE NEXT CODE:

% we ∗need∗ the paren these s be low ???
i f ha l f p i >1 & ha l f p i <2 & ~ ( h a l f p i ==1.5)

disp ( ’ p i /2 i s between 1 and 2 and not 1 . 5 ! ’ )
end

% the next might be more readab l e ?
i f ( ha l f p i >1) & ( ha l f p i <2) & ~ ( h a l f p i ==1.5)

disp ( ’ p i /2 i s between 1 and 2 and not 1 . 5 ! ’ )
end

% d e f i n i t e l y the be low i s more readab l e
i f ( ha l f p i >1) & ( ha l f p i <2) & ( h a l f p i ~=1.5)

disp ( ’ p i /2 i s between 1 and 2 and not 1 . 5 ! ’ )
end

% recommended by Matlab f o r i f or wh i l e :
i f ( ha l f p i >1) && ( ha l f p i <2) && ( h a l f p i ~=1.5)

disp ( ’ p i /2 i s between 1 and 2 and not 1 . 5 ! ’ )
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end

pi /2 i s between 1 and 2 and not 1 . 5 !
p i /2 i s between 1 and 2 and not 1 . 5 !
p i /2 i s between 1 and 2 and not 1 . 5 !
p i /2 i s between 1 and 2 and not 1 . 5 !

Checking condition numbers
Remember how we had to check the solution of the linear system of equations
in lesson5? Now we can do this in a much clearer and better way. In particular,
we can avoid wasting time and paper computing a useless solution.

disp ( ’ ’ )

% rec r ea t e the system
disp ( ’ Let ’ ’ s redo the s o l u t i o n o f the l i n e a r equat ions : ’ )
A = [1 2 3 ;

0 5 6 ;
7 8 9 ] ;

b = [ 3 ;
2 ;
9 ] ;

% CREATE A TEST12 .M SCRIPT FOR THE NEXT CODE:

% check the error in the s o l u t i o n due to Matlab
condA=cond(A)
re lErrorMat lab=condA∗eps (1 )
i f re lErrorMat lab >= 0.1

disp ( ’ There i s no rea sonab l e s o l u t i o n to t h i s system !
’ )

else
x = A \ b
i f re lErrorMat lab > 0.001

fpr intf ( ’Warning : est imated e r r o r %1E%%!\n ’ , . . .
r e lErrorMat lab ∗100)

end
end
disp ( ’Done . Try another matrix ! ’ )

Let ’ s redo the s o l u t i o n o f the l i n e a r equat ions :
condA = 37.939
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re lErrorMat lab = 8.4241 e−15
x =

1
−2
2

Done . Try another matrix !

Doing infinite sums to a given accuracy
Earlier in this lesson, we did the sum

S = 1
12 + 1

22 + 1
32 + . . .+ 1

i2max
=

imax∑
i=1

1
i2

to imax = 1000 terms.
This time, however, we would like to see what we get when we sum infinitely
many terms. But of course, that is not possible. It would take infinitely much
time for Matlab to sum infinitely many terms.
Instead what we can do is try to sum to some small remaining error that we are
willing to accept. Such an acceptable error is called a "tolerance". For example,
in this case we might decide that a remaining error of 0.0001 is tolerable.
To see whether we have reached the tolerance at any given term number i,
however, requires that we estimate the error that comes from not summing the
remaining terms. Estimating that error can only be an educated guess. (We
would only know for sure if we really summed the remaining terms, which is
exactly what we cannot do.)
So how should we estimate the remaining error in the sum at any stage in the
summing?

1. One way is to simply assume that the magnitude |ti| of the term currently
being added to the sum gives the estimated error. However, using |ti| as
estimated error only works correctly if the sum is "alternating", i.e. the
terms ti change sign all the time.

2. Otherwise it works much better if you assume that the estimated error is
about i times the magnitude of the term ti currently being added to the
sum.

Note that a lot of people who should know better simply use |ti| as estimated
error, and produce completely wrong results. In this class you must use |iti| as
estimated error if it is not an alternating series.
An if statement can be used to check whether the estimated error has become
smaller than the tolerance. If it has, you can use the "break" statement. A
break statement will terminate the loop that it is in, and with it, any summing
done inside it.
In the current example sum, we can check whether we are doing things right
because the value of the infinite sum is actually known: it should be π2/6.
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disp ( ’ ’ )

% the a l l owed t o l e r anc e in va lue
t o l =0.0001

% the maximum number o f terms we would ∗ ever ∗ want to sum
iMax=100000

% COPY TEST5.M TO TEST13 .M FOR THE NEXT CODE:

% i n i t i a l i z e the sum to zero (no terms summed ye t )
t o t a l =0;

% add terms u n t i l i t seems accura te but no more than iMax
for i =1:iMax

% the term t ( i ) to add to sum
t i =1/ i ^2 ;
% the new va lue o f sum i s the prev ious va lue p l u s t i
t o t a l=t o t a l+t i ;
% f ind the curren t es t imated error the r equ i r ed way
e s tEr ro r=i ∗abs ( t i ) ;
% t e s t whether we can s top summing
i f e s tEr ro r <= t o l

% stop summing ( " jump out o f the f o r loop " )
break

end
end

% pr in t out the r e s u l t s
fpr intf ( ’The found i n f i n i t e sum i s %.4 f \n ’ , t o t a l )
exactTota l=pi ^2/6;
t rueError=abs ( t o ta l−exactTota l ) ;
fpr intf ( ’The exact i n f i n i t e sum i s %.4 f \n ’ , exactTota l )
fpr intf ( ’The est imated e r r o r i s %.1E\n ’ , e s tEr ro r )
fpr intf ( ’The true e r r o r i s %.1E\n ’ , t rueError )

% in t e r p r e t the r e s u l t s
i f e s tEr ro r > t o l

disp ( ’ ∗∗∗ Requested accuracy not met , even a f t e r ’ )
fpr intf ( ’ summing %i terms ! \ n ’ , i )
disp ( ’Try a s t i l l l a r g e r number o f terms ? ’ )

e l s e i f t rueError > 10∗ e s tEr ro r
disp ( ’Maybe your est imated e r r o r i s no good? ’ )

else
fprintf ( ’ Needed to sum %i terms . \ n ’ , i )
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disp ( ’How about t ry ing a bad est imated e r r o r ? ’ )
disp ( ’Maybe along with a 1/ i sum? ’ )

end

t o l = 1.0000 e−04
iMax = 100000
The found i n f i n i t e sum i s 1 .6448
The exact i n f i n i t e sum i s 1 .6449
The est imated e r r o r i s 1 . 0E−04
The true e r r o r i s 1 . 0E−04
Needed to sum 10000 terms .
How about t ry ing a bad est imated e r r o r ?
Maybe along with a 1/ i sum?

Warning!!!
Warning: Students who end up with frozen homework programs, or messages
that Java/Adobe is misbehaving have incorrectly implemented the break com-
mand, or even omitted it completely. Trying to publish 100,000 message lines
is a sure recipe for crashing something. Please check operation of your break
command before seeing TA or instructor. And make sure all semicolons are
there.

Taylor series done better
If we want to sum a Taylor series, we probably want the most accurate answer
we can possibly get. To achieve this, note that in a convergent Taylor series,
eventually the terms become smaller and smaller. Finally they "underflow" and
become zero. After that point, it is obviously useless to keep summing. However
many times you add zero, it is not going to change the value.
But even when the terms are not yet underflowing, they may be too small to
further change the value of the sum. That is because numbers on a computer
have round-off errors. As soon as the individual terms in the sum become smaller
than the round off error in the accumulated sum, they are already unable to
change the sum.
So the smart way to do Taylor series is to keep summing until you have ensured
that the sum can no longer change. Let’s try it for ex:

disp ( ’ ’ )

% the x va lue at which we want the Taylor s e r i e s
x=1

% the maximum number o f terms we would ∗ ever ∗ want to sum
iMax=100000
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% COPY TEST7.M TO TEST14 .M FOR THE NEXT CODE:

% i n i t i a l i z e the sum to term t (0)
i =0;
t i =1;
t o t a l=t i ;

% loop to add up to iMax more terms to the sum
for i =1:iMax

% remember the l a s t va lue o f sum
to ta lOld=t o t a l ;
% compute term t ( i ) from the prev ious va lue
t i=t i ∗x/ i ;
% add term t ( i ) to the sum
t o t a l=t o t a l+t i ;
% see whether we can s top
i f t o t a l==tota lOld

break
end

end
i f t o t a l==tota lOld

fpr intf ( ’ Converged a f t e r %i terms . \ n ’ , i )
else

fprintf ( ’ ∗∗∗ Not converged a f t e r %i terms ! \ n ’ , i )
end

% pr in t out the ob ta ined va lue
t o t a l=t o t a l

% see how b i g the error r e a l l y i s
t o t a lE r r o r=to ta l−exp( x )
disp ( ’Done . Try other va lue s o f x , l i k e negat ive ones ! ’ )

x = 1
iMax = 100000
Converged a f t e r 18 terms .
t o t a l = 2.7183
t o t a lE r r o r = 4.4409 e−16
Done . Try other va lue s o f x , l i k e negat ive ones !
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WHILE LOOPS
The while command is similar to the for command in that it loops. However,
while does not perform a given number of loops. Instead while stays looping as
long as some condition remains true. The while command can be appropriate
in cases where you have no clue when looping will stop. (But I disagree with
the preference the online book displays for while statements. In most cases for
is the better choice. For one, a while loop can stay looping forever if something
goes wrong.)

Getting input from a script user using while
Let’s keep looping until the user admits that Matlab is great.

disp ( ’ ’ )

% CREATE A TEST15 .M SCRIPT FOR THE NEXT CODE:

% ge t the user ’ s name
name=getenv ( ’USER ’ ) ; % Unix ve r s i on
%name=getenv ( ’USERNAME’ ) % DOS ver s i on
% in the s c r i p t , r e p l a c e the above l i n e s by
%name=input ( ’ P lease en ter your name : ’ , ’ s ’ ) ;

% de f i n e a menu header
header=[name ’ admits that : ’ ] ;

% loop u n t i l we ge t the r i g h t answer
cho i c e =0;
while cho i c e~=4

cho i c e =4;
% in the s c r i p t , r e p l a c e the above l i n e by
%cho ice=menu( header , . . .
% ’Matlab i s h o r r i b l e . ’ , . . .
% ’Matlab i s too much work . ’ , . . .
% ’Matlab i s OK. ’ , . . .
% ’Matlab i s g r ea t ! ’ )
header=’Wrong answer . Try again : ’ ;

end

Doing a sum with a while loop
You can do with while loops whatever you can do with for loops. For example,
we can evaluate the Taylor series for exp(x) using a while loop as shown below.
It works just like the earlier for loop.

21



disp ( ’ ’ )

% the x va lue at which we want the Taylor s e r i e s
x=1

% the maximum number o f terms we would ever want to sum
iMax=100000

% COPY TEST14 .M TO TEST16 .M FOR THE NEXT CODE:

% i n i t i a l i z e the prev ious va lue o f the sum to i n f i n i t y
to ta lOld=Inf ;

% i n i t i a l i z e the sum to term t (0)
i =0;
t i =1;
t o t a l=t i ;

% in a wh i l e loop , add terms u n t i l the sum s top s changing
while t o t a l ~= tota lOld

% remember the l a s t va lue o f sum
to ta lOld=t o t a l ;
% each time through , inc rea se the i va lue by one
i=i +1;
% compute term t ( i ) from the prev ious va lue
t i=t i ∗x/ i ;
% add term t ( i ) to the sum
t o t a l=t o t a l+t i ;
% stop i f i t t a k e s too many terms
i f i >= iMax

break
end

end
i f t o t a l==tota lOld

fpr intf ( ’ Converged a f t e r %i terms . \ n ’ , i )
else

fprintf ( ’ ∗∗∗ Not converged a f t e r %i terms ! \ n ’ , i )
end

% pr in t out the ob ta ined va lue
t o t a l=t o t a l

% see how b i g the error r e a l l y i s
t o t a lE r r o r=to ta l−exp( x )
disp ( ’Done . Try other va lue s o f x , l i k e negat ive ones ! ’ )
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x = 1
iMax = 100000
Converged a f t e r 18 terms .
t o t a l = 2.7183
t o t a lE r r o r = 4.4409 e−16
Done . Try other va lue s o f x , l i k e negat ive ones !

End lesson 6
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