5 LINEAR ALGEBRA

Contents
[mitializationl
[SOLVING LINEAR SYSTEMS OF EQUATIONY]|

IThe problem we want to solve|

|IPut the problem in vector matrix form|

|ICheck whether the system is solvable, the correct way|

ISolve the system, the correct way|

Probl : cod

MATRIX MANIPULATIONS]

'Transposes|

Matrix multiplication|

|IPlay around with matrix multiplication|

|[Root-mean-square errors|

ISpecial matrices|

[Parts of matrices|

FIGENVALUES AND EIGENVECTORS

|A simple example|

|About symmetric matrices|

ADDITIONAL REMARKS]

10

10

11

14

19

19

21

26

28

28

31

32

33

Initialization

% reduce meedless whitespace
format compact

% reduce irritations

more off

% start a diary

%diary lectureN. txt

% Tell the students to save their work space
disp (’Save your workspace before leaving!’)

Save your workspace before leaving!

SOLVING LINEAR SYSTEMS OF EQUATIONS

In the next subsection, we will solve a system of 3 equations in 3 unknowns. That
is just a small example of much larger systems of maybe billions of equations in
billions of unknowns used to, say, solve flow fields by modern engineers.

disp(’)
disp ("SOLVING LINEAR SYSTEMS OF EQUATIONS: *)

SOLVING LINEAR SYSTEMS OF EQUATIONS:

The problem we want to solve

As an example, we want to solve the system of equations

X1 + 2172 + 31‘3 =
5x9 + 63
Tx1 +8x2 + 923 =

for the unknowns x1, x2, and x3.
Note that we have taken the terms involving unknowns to the left and terms
without unknowns to the right. We have also ordered the unknowns.

Put the problem in vector matrix form

To find the solution, first put the coefficients of the unknowns in a "matrix" A
and the right hand sides of the equations into a "right hand side vector b:

Note that the unknowns must be ordered. Also note that x; = 1z; and no z;
is the same as 0z;. Also note that it is customary to use uppercase for matrices
and lowercase for vectors.

In Matlab, a "matrix" is just a two-dimensional "array", (a table of with rows
and columns). The most straightforward way to create such an array is by
writing it out. For our matrix that is done as:

A=

i

i

N o =
co Ot N
O O W

Note that inside an array, a semi-colon starts a new line. (A comma does not
do anything special.) The Newlines inside the brackets are for readability; the
next would also work:

A=[0 2 3; 23 4; 56 7]

but would lose credit because it is a mess.

Also note that the use of the term "matrix" instead of simply "array" means that
you are planning to use the array in various special ways. In this case, as a way
to solve a system of equations.

In Matlab a column vector is just a one-dimensional column array (or a two-
dimensional array with just a single column). The right hand side vector of our
system can be created as:

b = [3;
2;

9]

% create the matrix
disp(’Create the system matrix A:’)
A=1]1 2 3;
05 6:
7 8 9]
disp ('The more concise A=[1 2 3; 0 5 6; 7 8 9],")
A=[1 2 3; 05 6; 7 8 9]
disp(’also works. However that reduces credit because’)
disp(’it is a mess.’)

% Put the right hand sides in a column vector b:
disp(’Create the right hand side vector b’)
b = [3;

2;

9]

Create the system matrix A:

A =
1 2 3
5 6
7 8 9
The more concise A=[1 2 3; 0 5 6; 7 8 9],
A =
1 2 3
0 5 6
7 8 9
also works. However that reduces credit because

it is a mess.
Create the right hand side vector b
b =

3

2

9

Check whether the system is solvable, the correct way

The system can now compactly be written as

T
AT =D = xo

T3

where matrix A and right-hand side vector b are as described above, and ¥ is
the column vector of the three unknowns z1, xo, and x3.

To solve the system correctly, first you must check that there is a numerically
accurate solution to this system of equations in the first place. If there is not,
then what is the point in solving it?

The wrong way to proceed would here be to check first that the determinant of
A is nonzero:

% WRONG, zero credit:
det (A)
disp(’det(A) is nonzero so the system is solvable.’)

The above would be fine if you would do ezact mathematics. But computers
do not normally do exact mathematics. They have numerical errors. In the
presence of numerical errors, whatever you compute for a determinant is mean-
ingless. A numerically zero determinant does not mean the system is unsolvable.
Instead it may very well be a system that can be solved to about the maximum
accuracy of the computer (a relative error of about 10716 in normal Matlab).

Conversely, an extremely large determinant does not mean the system can be
solved accurately. It may very well be impossible to get a meaningful solution
to such a system.

The correct way to check whether you are going to get a good solution is check
the so-called "condition number" of the matrix A. In Matlab you can get a
suitable condition number using cond (A). This number may not be too large.
In Matlab that means that the condition number cond(A) should be several
orders of magnitude less than 10'6:

% Correct, credit
condA=cond (A)
disp(’cond(A) is much less than 1E16, so OK.’)

In general the condition number should be several orders of magnitude less than
the inverse of the relative error in floating point numbers. Note that 106, is
the inverse of the Matlab relative error eps(1).

The meaning of the condition number is as follows:

Definition:
The condition number determines by what factor
solving the system magnifies relative errors.

Note that floating point numbers are stored in Matlab with a relative error of
10716, So if the condition number is 10116 or larger, the error in the solution
may be 100% or more, just due to storing the numbers of the system in storage
locations. In that case the solution is obviously meaningless. For the most
accurate solution you would really like the condition number to be relatively
small. (The smallest it can be is 1.)

disp (")

disp (’Check the system the zero—credit way:’)
disp(’find the determinant:’)

badBadBadDetA=det (A)

disp(’In numerical methods, the determinant means:’)

disp(’— nothing if it is zero;’)
disp(’— nothing if it is small;’)
disp(’— nothing if it is finite;’)
disp (’— nothing if it is large.’)

% the good way: check the condition number
disp(* ')
disp (’Check the system the full—credit way:’)
condA=cond (A)
disp(’cond(A) is a lot smaller that 1.el6, so OK.’)
disp(* ")
disp ('But note that if the values of A and b have’)
disp ('measurement errors of just 1%, then the’)

(

disp (’computed x values might have relative errors’)

disp(’as high as 40%:’)

relErrData=0.01

xRelErr=relErrDataxcondA

disp (’Without checking the condition number, we would’)
disp (’have no clue of that!”’)

disp (7 ")

disp(’To rub it in, the following matrix, diag(—2,3,4):7)
Diag=diag([—2 3 4])

disp(’also has’)

detDiag=det (Diag)

disp(’but there is no big increase in the error solving’)
disp(’equations with this matrix:’)

condDiag=cond (Diag)

Check the system the zero—credit way:

find the determinant:

badBadBadDetA = —24

In numerical methods, the determinant means:
— nothing if it is zero;

— nothing if it is small;

— nothing if it is finite;

— nothing if it is large.

Check the system the full—credit way:
condA = 37.939
cond(A) is a lot smaller that 1.e16, so OK.

But note that if the values of A and b have
measurement errors of just 1%, then the
computed x values might have relative errors

as high as 40%:

relErrData = 0.010000

xRelErr = 0.37939

Without checking the condition number, we would
have no clue of that!

To rub it in, the following matrix, diag(—2,3,4):
Diag =
Diagonal Matrix

-2 0 0
0 3 0
0 0 4
also has
detDiag = —24

but there is no big increase in the error solving

equations with this matrix:
condDiag = 2

Solve the system, the correct way

Next if the system is indeed solvable according to the test above, solve it. The
wrong way to do so is

% WRONG, zero credit
x = inv(A)xb

Computing an inverse matrix is very to extremely inefficient. It also tends to
increase round-off errors. (What do you think, doing all these needless compu-
tations?)
The correct way to solve a generic system of equations in Matlab is using "left
division"

% Correct, credit
x=A\bD (left division: A\b instead of b/A)

If this is not the best way to solve your system, then you must learn a lot about
linear algebra and numerical linear algebra before you can solve it yourself.

disp(’)
A
b
disp(’)

disp(’Solve the system the zero—credit way:’)
badInvA_ Star__b=inv (A) b

% the good way: check the condition number

disp (")

disp(’Solve the system the full—credit way:’)

disp(’use "left division" (not b/A but A\b):’)
x=A\b

disp (’This is the correct solution to the system of’)
disp(’equations as given, to at least 14 digits or so.’)

A =
1 2 3
0 5 6
7 8 9
b =
3
2
9

Solve the system the zero—credit way:
badIlnvA_Star b =

1.0000

—2.0000

2.0000

Solve the system the full—credit way:
use "left division" (not b/A but A\b):
X =
1
—2
2
This is the correct solution to the system of
equations as given, to at least 14 digits or so.

Problematic matrices

Consider now the modified system of equations

T + 229 + 323
4x1 + g + 623 =
Tx1 + 8x2 + 923 =

The only change is the additional 442, in the second equation. But the matrix
is now singular, i.e. it has a zero determinant. In that case there is normally
no solution at all. (If there is a solution, there are infinitely many other ones
that are just as good). We want to see what happens when we try to solve this
matrix correctly in Matlab.

To form the new matrix, which we will call ASing in Matlab, we want to take
the old matrix and just change the zero in row 2, column 1 into a 4. We can do
that with "indices". Always remember:

Important :
For matrices, the proper order is row—column

In particular, the element in row 2 and column 1 of ASing is ASing(2,1). The
numbers 2 and 1 are called the "indices" of the element. Note that the row
number 2 goes before the column number 1.

disp (" ')

disp(’Let’’s try a singular matrix now:’)
% copy A into ASing

disp(’After ASing=A:’)

ASing=A

% change the 0 element in row 2 and column 1 into a 4.
ASing (2,1)=4;

disp(’After ASing(2,1)=4:")

ASing

% check the condition number

disp ('Check the condition number: ’)

condASing=cond (ASing)

disp('The condition number is excessive.’)

disp('Even with its 1E—16 relative error, Matlab can’)
disp(’not find the solution to an acceptable error:’)
xRelErrorDueToMatlab=condASing*eps (1)

disp (’The 1E-16 relative error in A and b would predict’)

disp (’a maximum relative error in x of about 1,300%!’)
disp(’But, like here, a condition number of about 1E16’)
disp(’or more may simply mean the matrix is singular.’)
disp('Then any numerical solution is meaningless.’)

% Try solving anyway?

disp ('Try xSing=A\B anyway? (Stupid):’)

xSing = A \ b

disp (’Nice numbers, but they are all wrong;’)

disp ('the exact solution is infinite!”)

disp(’'Do not solve singular systems unless told so!’)

Let’s try a singular matrix now:
After ASing=A:

ASing =
1 2 3
0 5 6
7 8 9
After ASing(2,1)=4:
ASing =
1 2 3
4 5 6
7 8 9
Check the condition number:
condASing = 6.0262e+16

The condition number is excessive.

Even with its 1E—16 relative error, Matlab can
not find the solution to an acceptable error:
xRelErrorDueToMatlab = 13.381

The 1E—16 relative error in A and b would predict
a maximum relative error in x of about 1,300%!
But, like here, a condition number of about 1E16

or more may simply mean the matrix is singular.
Then any numerical solution is meaningless.
Try xSing=A\B anyway? (Stupid):
xSing =
1
-2
2
Nice numbers, but they are all wrong;
the exact solution is infinite!
Do not solve singular systems unless told so!

MATRIX MANIPULATIONS

For advanced applications in linear algebra you must know how to do certain
tasks.

disp (")
disp ('MATRIX MANIPULATIONS:)

MATRIX MANIPULATIONS:

Transposes

The "transpose" of a matrix A is indicated by AT. The columns in A becomes
rows in AT and vice-versa:

Definition :
Transposing swaps rows and columns.

As we already saw

Important :
To transpose in Matlab, append a quote.

disp(’ 7)
disp(’Create a transpose T using a ’’ at the end:’)

% try it for wector b

b=b

bT=b’

disp (’Note that a second transpose undoes the first:’)
bTT=bT"’

% try it for matriz A
A=A

10

AT=AY

ATT=ATY
Create a transpose T using a ’ at the end:
b =
3
2
9
bT =
3 2 9

Note that a second transpose undoes the first:
bTT =

3
2
9
A =
1 2 3
0) 6
7 8 9
AT =
1 0 7
2 5 8
3 6 9
ATT =
1 2 3
0 5 6
7 8 9

Matrix multiplication

So far, we never actually checked that the solution & that we found for AZ = b
was any good. To check it, we can tell Matlab to multiply matrix A with column
vector and compare that to b. But to do so, we cannot multiply A and & using
the usual "elementwise" array multiplication ‘.x’. Instead we must us a simple
‘«’ without the point to multiply A and Z. Then Matlab will multiply the two in
a special way that is called "matrix multiplication". (True, Z is a column vector,
but remember that any column vector is also a matrix with just one column.)
The key thing to remember is:

Important :
Matrix multiplication is always row—column.

In particular, if we multiply matrices

11

1 2 3 1
A= 0 5 6 and T=| xo
7 8 9 I3
together with *, we get
1 2 3 T 1z + 29 + 323
AZ = 0O 5 6 To = 0x1 4+ dx9 + 623
7 8 9 T3 Txy + 8xo + 923

Note that the first of the three components of the result vector is found as a dot
product between row 1 of A and the single column 1 of vector x. This should be
the same as the first component of 5, which is 3. Similarly the second component
is a dot product between row 2 of A and the single column 1 of vector x, and
should be 2. And similarly for the third component, which should be 9.

Note:
The row—column multiplications are dot products.

From the above, it is obvious that

Important :
Rows and columns involved in matrix multiplication
must have the same number of elements.

Also note the following

Important :
If you multiply arrays together with ‘x’, Matlab
will try to do matrix multiplication.

To get Matlab to do elementwise multiplication, use ‘.*’ instead of ‘«’. Similarly
use “" instead of *” and “./’ instead of ‘/’ as operators on arrays to avoid matrix
interpretation.

disp (")

disp(’Let’’s try some matrix multiplications:’)
disp(’)

disp(’Let’’s repeat our check that A x = b:")

% evaluate A x

disp (’Find out what Axx is (do NOT use .x here):’)
A Star x=Axx

% compare with b

disp(’This should be b:’)

b=b

% evaluate the error wvector A z — b

disp(’See what the difference (error vector) is:’)
A Star x Minus b=Axx—b

disp (’Seems good! ")

12

% evaluate the mazimum error
fprintf('Maximum difference between A x and b: %E.1° ...
max(abs (Axx—b)))

disp(* ")
% evaluate ASing zSing
disp ('Find out what ASing*xSing is:’)
ASing_Star_xSing=ASingxxSing
% compare with b
b=b
% evaluate the error wvector A x — b
disp(’See what the difference (error vector) is:’)
ASing_Star_ xSing_Minus_b=ASing*xSing—b
disp (’This error may be small even if xSing is no good!”’)
% evaluate the mazimum error
fprintf(’Maximum difference: %.1E\n’ ;...
max(abs (ASingxxSing—b)))

Let’s try some matrix multiplications:

Let’s repeat our check that A x = b:
Find out what Axx is (do NOT use .x here):
A Star x =

3

2

9
This should be b:
b =

3

2

9
See what the difference (error vector) is:
A Star x Minus b =

0

0

0
Seems good!
Maximum difference between A x and b: 0.000000E400.1
Find out what ASingxxSing is:
ASing_Star_xSing =

13

2

9
See what the difference (error vector) is:
ASing_ Star_ xSing_ Minus_b =

0

4

0
This error may be small even if xSing is no good!
Maximum difference: 4.0E400

Play around with matrix multiplication

% let ’s play a bit with matriz multiplication

disp (7 ")

disp ('How about some more multiplications?’)

A=A

X=X

b=b

B=[xDbb x]

disp (’Each column in B is multiplied to A separately:’)
A Star B=AxB

disp('Note that AB is not BA; BA does not exist:’)

disp(’the four element rows of B cannot be dotted with’)
disp(’the three element columns of A.7)

disp(’And even if they could be multiplied, normally’)
disp (’AB is not the same as BA (exceptions exists).’)

% transpose

disp(’)

disp(’If b is a column vector:’)

b=b

disp('then the "transpose' of b is a row vector:’)
bT=b’

% matriz product of bT and z

disp (" ")

disp(’"Dot product" bT*x produces b dot x:’)

bT=b’

X=X

bT Star x=b’xx

disp(’Can also be obtained using the dot function:’)
bDotx=dot (b, x)

disp(’"Dot product" bTxb is the square length of b:’)
bT=b’

b=b

14

bT Star b=b’xb
disp (’Can also be obtained using the norm function:’)
bNormSquare=norm(b) "2

% "outer" product of b and =z

disp(*)

disp(’"Outer product" b#bT produces a matrix:’)
b=b

bT=b’

b_Star bT=bxb’

disp (’And so does bxxT:’)

b=b

xT=x"’

b Star xT=bxx’

% b72 fails: row length 1 times column length 8 is bad

disp (* *)

disp(’Unlike bTxx and b#xT, bxx and bT+xT are illegal.’)
disp(’And so is b72.7)

disp (’None of these are row—column as they should be.’)

% "elementwise" computation of x

disp(’)
disp(’b.xb is multiplied elementwise:)
b=b

b_PtStar_b=b.xb

disp(’and so is b.72:7)

b_PtSquare=b."2

disp ('The same for bT:’)

bT_PtStar_bT=b’.xb’

bT_PtSquare=b’."2

disp(’Still another way to get the dot product:’)
b PtStar x=b.xx

sum_b_ PtStar_x=sum(b.x*x)

% some more multiplications

disp(’ 7)
disp (’The same ideas apply to matrices:’)
A=A

AT Star A=A’xA

disp (’For a square matrix A, AxA and A™2 work:)
A Star A=AxA

A_Square=A"2

disp('Elementwise operations on matrices:’)

A PtStar A=A.xA

A_PtSquare=A."2

15

How about some more multiplications?

A =
1 2 3
0 5) 6
7 8 9
X =
1
-2
2
b =
3
2
9
B =
1 3 3 1
-2 2 2 =2
2 9 9 2

Each column in B is multiplied to A separately:
A Star B =

3 34 34 3
2 64 64 2
9 118 118 9

Note that AB is not BA; BA does not exist:

the four element rows of B cannot be dotted with
the three element columns of A.

And even if they could be multiplied , normally
AB is not the same as BA (exceptions exists).

If b is a column vector:
b =
3
2
9
then the "transpose' of b is a row vector:
bT =
3 2 9

"Dot product" bTxx produces b dot x:

bT =

3 2 9
X =

1

-2

16

2
bT Star x = 17
Can also be obtained using the dot function:
bDotx = 17
"Dot product" bTxb is the square length of b:
bT =

3 2 9
b =

3

2

9
bT Star b = 94
Can also be obtained using the norm function:
bNormSquare = 94.000

"Outer product" b#bT produces a matrix:

3
2
9
bT =
3 2 9
b_Star bT =
9 6 27
6 4 18
27 18 81
And so does bx*xT:
b =
3
2
9
xT =
1 -2 2
b_Star xT =
3 —6 6
2 —4 4
9 -—18 18

Unlike bTxx and bxxT, bxx and bT*xT are illegal.
And so is b72.
None of these are row—column as they should be.

b.xb is multiplied elementwise:
b =

3

2

17

9
b_PtStar b =

9

4

81
and so is b."2:
b_PtSquare =

9

4

81
The same for bT:
bT_ PtStar bT =

9 4 81
bT_PtSquare =
9 4 81

Still another way to get the dot product:
b_PtStar x =

3

—4

18
sum_b_ PtStar x = 17

The same ideas apply to matrices:
A =

1 2 3

0 5 6

7 8 9
AT Star A =

50 58 66

58 93 108

66 108 126
For a square matrix A, A*A and A™2 work:
A Star A =

22 36 42

42 73 84

70 126 150
A_Square =

22 36 42

42 73 84

70 126 150
Elementwise operations on matrices:
A PtStar A =

1 4 9
0 25 36
49 64 81
A PtSquare =

18

1 4 9
0 25 36
49 64 81

Dot products

Important :
In matrix multiplication terms, any dot product
between vectors must be row—column.

So, to take the dot product between two column vectors, you must put a quote
on the first vector in the product.

% examples :

disp(’)
disp (’example dot products:’)
v=[3;
4]
w=[1;
2]

disp (’The dot product of vectors v and w is 11:7)
vT_ Star w=v’xw

wT Star v=w’*v

disp('The square length of vector v is 25:7)

vT Star v=v’'x*v

disp(’'The length of a vector v is sqrt(v dot v):’)
sqrt_ vT_Star_v=sqrt(v’*v)

example dot products:

v =
3
4
W =
1
2

The dot product of vectors v and w is 11:
vI Star w = 11

wT Star v = 11

The square length of vector v is 25:

vT Star v = 25

The length of a vector v is sqrt(v dot v):
sqrt_ vT_Star_ v = 5

19

Root-mean-square errors

One type of error you often want to find is not the maximum error, but the
"root-mean-square" (RMS) one.

% the error in ASing zSing = b
disp(’)
disp (’The errors in ASing x = bSing were: ")
errorVec=ASing*xSing—b
% evaluate the mazimum error
fprintf(’Maximum difference between ASing xSing and b:

%.1E\n’ ,...

max(abs (errorVec)))

% evaluate the sum of the square errors
disp(’A dot product gives the sum of the square errors:’)
summedSquareErrors=errorVec 'xerrorVec
% get the number of errors
disp(’The size function says how many errors there are:’)
sizeErrorVec=size (errorVec)
totalSizeErrorVec=prod(size (errorVec))
% to get the average, divide by the number of errors
disp('Use that to get the average square error:’)
meanSquareError=...

errorVec 'xerrorVec /prod(size (errorVec))
% now take square root
disp(’and then take square root to get the RMS error:’)
disp(’sqrt (errorVec’ >serrorVec/prod(size (errorVec)))’)
rmsError=...

sqrt (errorVec 'xerrorVec/prod(size (errorVec)))
disp (’Another way to get this:’)
disp(’sqrt (dot (errorVec ,errorVec)/prod(size (errorVec)))’)
rmsError=...

sqrt (dot (errorVec ,errorVec)/prod(s
disp(’Still another way to get this:’)
disp(’sqrt (sum(errorVec. 2)/prod(size (errorVec)))’)
rmsError=...

sqrt (sum(errorVec. 2) /prod(size (errorVec)))
% print it out neatly
fprintf('RMS difference between A x and b: %.1E\n’ ,...

rmsError)

ize (errorVec)))

The errors in ASing x = bSing were:
errorVec =

0

4

0

20

Maximum difference between ASing xSing and b: 4.0E+00
A dot product gives the sum of the square errors:
summedSquareErrors = 16

The size function says how many errors there are:
sizeErrorVec =

3 1
totalSizeErrorVec = 3
Use that to get the average square error:
meanSquareError = 5.3333

and then take square root to get the RMS error:
sqrt (errorVec '« errorVec/prod(size (errorVec)))
rmsError = 2.3094

Another way to get this:

sqrt (dot (errorVec ,errorVec)/prod(size (errorVec)))
rmsError = 2.3094

Still another way to get this:

sqrt (sum(errorVec.”2) /prod(size (errorVec)))
rmsError = 2.3094

RMS difference between A x and b: 2.3E+400

Special matrices

A zero matriz is the matrix equivalent of the number zero. Adding or subtract-
ing a zero matrix A to something does not do anything. Multiplying by a zero
matrix produces zero. A zero matrix contains all zeros. The symbol for a zero
matrix is typically Z.

A unit matriz (or identity matriz) is the matrix equivalent of the number 1;
multiplying by a unit matric does not change anything. A unit matrix is square
and contains zeros except on the "main diagonal" that goes from top left corner
to bottom right corner. The symbol for a unit matrix is typically "T".

A symmetric matriz is the same as its transpose. So A is symmetric iff AT = A.
Symmetric matrices occur in many highly important engineering applications.

disp(’)
disp(’Let’’s look at some special matrices:’)

% make a bigger matriz to test

disp(’'First, let’’s make a bigger matrix for testing:’)
Big=[A AT]

disp ('The size of a matrix is [rows columns]|:’)
BigSize=size (Big)

% a zero matriz consists of all zeros

disp(’ ")

disp(’Create a zero matrix for Big+Z or Z+Big:’)
Z=zeros (3,6)

21

disp(’'The correct way to do this: Z=zeros(size(Big)):’)
Z=zeros(size (Big))

disp (’Adding a zero matrix makes no difference:’)
Big=Big

BigPlusZ=Big+Z

ZPlusBig=Z+Big

disp(’Create a square zero matrix for ZxBig:’)
[mBig nBig]=size (Big)

disp(’The correct way to get Z: Z=zeros(mBig): ")
Z=zeros (mBig)

disp (’Multiplying by a zero matrix produces zero:’)
Z_Star_ Big=ZxBig

disp(’A "zero vector" for ZxBig: Z=zeros(1,mBig): ")
Z=zeros (1 ,mBig)

disp (’Multiplying by a zero matrix produces zero:’)
Z_Star_ Big=ZxBig

disp(’Create a square zero matrix for BigxZ:’)
[mBig nBig]=size (Big)

disp(’'The correct way to get Z: Z=zeros(nBig):’)
Z=zeros (nBig)

disp (’Multiplying by a zero matrix produces zero:’)
Big Star_Z=BigxZ

disp(’Create a zero vector for Big«Z: Z=zeros(nBig,1):”)
Z=zeros (nBig,1)

disp (’Multiplying by a zero matrix produces zero:’)
Big Star_Z=BigxZ

% a unit matriz has ones on the main diagonal

disp(’)

disp(’Create a unit matrix for IxBig:’)

I=eye(3)

disp(’The correct way to do this:’)

[mBig nBig]=size (Big)

disp(’'The correct way to get I: I=eye(mBig):’)

I=eye (mBig)

disp (’Multiplying by a unit matrix makes no difference:’)
Big=Big

I_Star_Big=IxBig

b=b

I Star b=Ixb

disp(’Create a unit matrix for BigxI:’)

[mBig nBig]=size (Big)

disp (’The correct way to get I: I=eye(nBig):’)
I=eye(nBig)

disp(’Multiplying by a unit matrix makes no difference:”)
Big=Big

22

Big_Star_ I=BigxI

% look at a symmetric matriz

disp(’)

disp (’An example symmetric matrix:’)
S=1[3 4 5;

4 6 T;
5 7 8]
disp (’The transpose is the same:’)

ST=S"’

Let’s look at some special matrices:
First, let 's make a bigger matrix for testing:
Big =

1 2 3 1 0 7

0) 6 2 5 8

7 8 9 3 6 9
The size of a matrix is [rows columns]:
BigSize =

3 6

Create a zero matrix for Big+Z or Z+Big:
Z =

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0
The correct way to do this: Z=zeros(size(Big)):
7 =

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0
Adding a zero matrix makes no difference:
Big =

1 2 3 1 0 7

0 5 6 2 5 8

7 8 9 3 6 9
BigPlusZ =

1 2 3 1 0 7

0 5 6 5 8

7 8 9 3 6 9
ZPlusBig =

1 2 3 1 0 7
0 5 6 2 5 8
7T 8 9 3 6 9
Create a square zero matrix for ZxBig:

23

The correct way to get Z: Z=zeros(mBig):

7 =

0 0 0

0 0 0

0 0 0
Multiplying by a zero matrix produces zero:
Z_Star_Big =

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0
A "zero vector' for ZxBig: Z=zeros(1,mBig):
7 =

0 0 0
Multiplying by a zero matrix produces zero:
Z_Star_Big =

0 0 0 0 0 0
Create a square zero matrix for BigxZ:
mBig = 3
nBig = 6
The correct way to get Z: Z=zeros(nBig):
7 =

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
Multiplying by a zero matrix produces zero:
Big Star_Z =
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

Create a zero vector for BigxZ: Z=zeros(nBig,1):
Z =

o O o oo

0
Multiplying by a zero matrix produces zero:
Big Star_7Z =

0

0

24

0

Create a unit matrix for IxBig:

I =
Diagonal Matrix
1 0 0
0 1 0
0 0 1
The correct way to do this:
mBig = 3
nBig = 6

The correct way to get I: I=eye(mBig):
I —
Diagonal Matrix

1 0 0
0 1 0
0 0 1

Multiplying by a unit matrix makes no difference:
Big =

1 2 3 1 0 7
0 5 6 2 5 8
7 8 9 3 6 9
I_Star_ Big =
1 2 3 1 0 7
0 5 6 5 8
7 8 9 3 6 9
b =
3
2
9
I Star b =
3
2
9
Create a unit matrix for BigxI:
mBig = 3
nBig = 6

The correct way to get I: I=eye(nBig):

I =

Diagonal Matrix
1 0 0

S o=, O OO
O = OO OO
_— o0 O o oo

o O o oo
S o oo
[N eNoil)

25

Multiplying by a unit matrix makes no difference:
Big =

1 2 3 1 0 7

0 5 6 2 5 8

7 8 9 3 6 9
Big_ Star_I =

1 2 3 1 0 7

0 5 6 5 8

7 8 9 3 6 9
An example symmetric matrix:
S =

3 4 5

4 6 7

5 7 8
The transpose is the same:
ST =

3 4 5

4 6 7

5 7 8

Parts of matrices

When we created singular matrix ASing, we already saw that you can address
a single number in a matrix using (ROW,COLUMN). For example, the element in
row 2 and column 1 of ASing was ASing(2,1).

You can also address multiple elements in a matrix by using START:END con-
structs. Below are some examples.

disp(’ 7)
disp (’Try taking parts out of matrices:”)

% use the big matriz
Big=Big
sizeBig=size (Big)

% taking parts of rows out (note row—column!)
disp ('row2part=Big(2,2:4):")
row2part=Big (2,2:4)

% taking an entire row out

disp (’row2all=Big(2,:): ")

row2all=Big(2,:)

disp(’'Bad, as less readable: row2allBAD=Big(2,1:end):’)
row2allBAD=Big (2 ,1:end)

disp ('Worse (Big may change): row2allWORSE=Big(2,1:6):")

26

row2allWORSE=Big (2 ,1:6)

% taking columns out of a matriz (important)
disp(’col4all=Big(:,4):")
coldall=Big(:,4)

% taking three columns out at the same time
disp(’col345all=Big(:,3:5):")
col345all=Big(:,3:5)

% deleting a column

disp(’Let’’s delete column 2 in AT:’)
ATDel=AT

disp ("ATDel (:,2) =[]:)

ATDel(:,2) =[];

ATDel=ATDel

Try taking parts out of matrices:

Big =

1 2 3 1 0 7

0 5 6 2 5 8

7 8 9 3 6 9
sizeBig =

3 6
row2part=Big(2,2:4):
row2part =

5 6 2
row2all=Big (2,:):
row2all =

0 5 6 2 5 8
Bad, as less readable: row2allBAD=Big(2,1:end):
row2allBAD =

0) 6 2 5 8
Worse (Big may change): row2allWORSE=Big (2 ,1:6):
row2allWORSE =

0 5 6 2 5 8
coldall=Big(:,4):

col4all =

1

2

3
col345all=Big(:,3:5):
col34ball =

3 1 0

6 2 5

27

9 3 6
Let’s delete column 2 in AT:
ATDel =

1

2

3
ATDel (:,2) =]]:
ATDel =

1 7

2 8

3 9

o Ot O

7
8
9

EIGENVALUES AND EIGENVECTORS

A vector € is an eigenvector of a given square matrix A if € is nonzero and:

Ae = \é

where A is a number called the eigenvalue.

Finding eigenvalues and eigenvectors is important for very many engineering
problems. For example, the "principal moments of inertia" of a rotating body
are eigenvalues. The corresponding eigenvectors are the unit vectors of the
"principal coordinate system". Also, the eigenvalues of "stiffness matrices" of
vibrating systems give the frequencies of vibration, and the eigenvectors give the
mode shapes. Eigenvalues and eigenvectors are also critical in beam bending,
in beam buckling, in the stresses and strains in materials under loads, and so
on.

Here we want to explore how, given a matrix A, you can find its eigenvalues and
eigenvectors.

disp(’ 7)
disp (’EIGENVALUES AND EIGENVECTORS:)

% see what is available to do so
disp(’)
disp(’lookfor eigenvalue’)

EIGENVALUES AND EIGENVECTORS:

lookfor eigenvalue

A simple example

28

disp(’)
disp(’Let’’s find some eigenvalues and eigenvectors!’)

% example symmetric matrix

disp(’The "strain rate' matrix S in Couette flow:’)
C=1
S = |

0CO0:
C 0 0;

00 0]

disp(’Get the eigenvalues with lambda=eig(S): ")
lambda=eig (S)

disp ('Get the eigenvectors with [E Lambda]=eig(S):")
[E Lambda]=eig(S)

disp(’Separate the eigenvalues out as lambda(N): ")
lambdal=lambda (1)
lambda2=lambda (2)
lambda3=lambda (3)

disp(’Or separate the eigenvalues out as Lambda(N,N):7)
lambdal=Lambda (1 ,1)

lambda2=Lambda (2 ,2)

lambda3=Lambda (3 ,3)

disp(’Separate out the eigenvectors as E(:,N):’)

el=E(:,1)
e2=E(:,2)
e3=E(:,3)
disp(*)

% let s check that Matlab found the right wvectors
disp (’Check that S eN = lambdaN eN:)
S Star_el=Sxel

lambdalel=lambdalx*el
errorsl=Sxel—lambdal=xel
maxErrorl=max(abs(errorsl))

S _Star_ e2=Sxe2

lambda2e2=lambda2xe2
errors2=Sxe2—lambda2xe2
maxError2=max(abs(errors2))

S Star e3=Sxe3

lambda3e3=lambda3xe3
errors3=Sxe3—lambda3xe3
maxError3=max(abs(errors3))

Let’s find some eigenvalues and eigenvectors!
The "strain rate" matrix S in Couette flow:

29

0 1 0
1 0 0
0 0 0

Get the eigenvalues with lambda=eig (S):
lambda =

-1

0

1
Get the eigenvectors with [E Lambda]=eig(S):
E =

—-0.70711 0.00000 0.70711

0.70711 0.00000 0.70711

0.00000 1.00000 0.00000

Lambda =
Diagonal Matrix
-1 0 0
0 0 0
0 0 1

Separate the eigenvalues out as lambda(N):
lambdal = -1
lambda2 = 0
lambda3d = 1
Or separate the eigenvalues out as Lambda(N,N):
lambdal = —1
lambda2 = 0
lambda3d = 1
Separate out the eigenvectors as E(:,N):
el =
—0.70711
0.70711
0.00000
e2

I=ool

e3
0.70711
0.70711
0.00000

Check that S eN = lambdaN eN:
S Star el =

0.70711

—-0.70711

30

0.00000
lambdalel =
0.70711
—-0.70711
—0.00000
errorsl =

0

0

0
maxErrorl = 0
S Star e2 =

0

0

0
lambda2e2 =

0

0

0
errors2 =

0

0

0
maxError2 = 0
S Star _e3 =

0.70711

0.70711

0.00000
lambda3ed =

0.70711

0.70711

0.00000
errorsd =

0

0

0

maxError3d = 0

About symmetric matrices

As already noted, a matrix A is symmetric iff it equals its transpose; AT = A.
There are some special rules for the eigenvalues and eigenvectors of symmetric
matrices:

1. The eigenvalues are always real, not complex.

31

1. The eigenvectors can be taken to be mutually orthogonal unit vectors.
They are the unit vectors along the "principal axes" of the matrix.

Since our example matrix was symmetric, let’s check whether Matlab found the
right eigenvalues and eigenvectors. The eigenvalues, -1, 0, and 1, are indeed
real, check.

disp (" ')

disp(’Since matrix S is symmetric, the eigenvectors’)
disp (’should have length 1:7)

% the length of the wvectors can be computed using norm
disp(’Lengths of the eigenvectors using norm:)
elNorm=norm(el)

e2Norm=norm (e2)

e3Norm=norm(e3)

% or dot the wector with itself and take square rToot
disp(’Lengths of the eigenvectors using dot products:’)
sqrt_elT_Star_el=sqrt(el’xel)

sqrt_e2T Star e2=sqrt(e2’*e2)
sqrt_e3T_Star_e3=sqrt(e3’*e3)

% vectors are orthogonal if their dot product is zero
disp(’Since matrix S is symmetric, the eigenvectors’)
disp (’should be mutually orthogonal (zero dot product):’)
elT_ Star e2—=el ’'xe2

e2T_ Star e3=e2’xe3

e3T Star el=e3’xel

Since matrix S is symmetric, the eigenvectors
should have length 1:
Lengths of the eigenvectors using norm:

elNorm = 1
e2Norm = 1
e3dNorm = 1

Lengths of the eigenvectors using dot products:
sqrt_elT_Star_el = 1

sqrt_e2T_ Star_e2 = 1

sqrt_e3T_Star_e3 1

Since matrix S is symmetric, the eigenvectors
should be mutually orthogonal (zero dot product):
elT Star e2 = 0

e2T Star e3 = 0

e3T Star el = 0

32

ADDITIONAL REMARKS

In left division, Matlab will examine the matrix and if the matrix has special
properties that warrant a special solution procedure, select it. To save Matlab
time or force it to use a given procedure, you can use linsolve, which allows
you to specify options.

Use of linsolve also allows you to get a (I presume approximate and, for the
experts, L1) condition number. That may be of interest for very big systems,
as finding cond(A) may take nontrivially more effort than actually solving the
system. But I cannot find info in the Matlab documentation on the actual
condition number returned.

If the matrix is "sparse", i.e. it is a big matrix whose elements are almost all
zeros, you should create it as a Matlab sparse matrix. This avoids wasting
storage to store all these zeros, and wasting computational time to do trivial
operations on all these zeros. You can create Matlab sparse matrices with the
sparse function. If the matrix is a band matrix, i.e. the nonzero elements are
along 45 degree downward diagonals, function spdiags may be a more suitable
way to create the sparse matrix.

If not using Matlab, the normal efficient way to solve equations will likely be re-
ferred to as "LU decomposition". If you have a band matrix, look for a dedicated
LU-decomposition subroutine for those.

End lesson 5

33

	Initialization
	SOLVING LINEAR SYSTEMS OF EQUATIONS
	The problem we want to solve
	Put the problem in vector matrix form
	Check whether the system is solvable, the correct way
	Solve the system, the correct way
	Problematic matrices
	MATRIX MANIPULATIONS
	Transposes
	Matrix multiplication
	Play around with matrix multiplication
	Dot products
	Root-mean-square errors
	Special matrices
	Parts of matrices
	EIGENVALUES AND EIGENVECTORS
	A simple example
	About symmetric matrices
	ADDITIONAL REMARKS
	End lesson 5

