
4 ODE
Contents

Initialization 1

THE PROBLEM WE WANT TO SOLVE 1

Solving the problem with Matlab instead of math 2

INCLUDING AIR RESISTANCE 4

Computing a few different cases 7

ADDITIONAL REMARKS 9

End lesson 4 9

Initialization

% reduce n e e d l e s s wh i te space
format compact
% reduce i r r i t a t i o n s
more o f f
% s t a r t a d iary
%diary l ec tureN . t x t

THE PROBLEM WE WANT TO SOLVE
We want to study Galileo’s experiment of dropping iron spheres from the 60
m high leaning Tower of Pisa and seeing how long it takes for them to hit the
ground.
Nowadays we can easily solve this problem. In particular, let s be the distance
that the sphere has traveled down. By definition, the time derivative of the
distance traveled is the velocity v. And Newton’s second law tells us that the
mass of the sphere m times the acceleration (the time derivative of the velocity
v), equals the force. That force is the force of gravity mg. So we have:

1

ds
dt = v

m
dv
dt = mg

A system of equations like this is called a system of "Ordinary Differential Equa-
tions", (ODE), because the equations contain derivatives. We can easily solve
it.
But to do so, we need some additional information, we need "Initial Conditions".
In particular, we will take the time to be 0 when Gallileo releases the sphere.
At that time, the sphere has not yet traveled any distance so s must be zero at
time zero. In addition, we will assume that gallileo drops the sphere, not that
he throws it down. So we also assume that v is zero at time zero. So the initial
conditions are:

s = 0 and v = 0 at t = 0
We can easily integrate the second ODE (i.e. Newton’s second law), to give

v = gt+ C1

and C1 must be zero because of the initial condition on v. With that we can
integrate the first ODE to find the displacement s as:

s = 1
2gt

2 + C2

and C2 must be zero because of the initial condition. Substituting in the 60 m
height of the tower of Pisa for s and 9.81 m/s2 for g, we find that the time for
the sphere to reach the ground is about 3.5 seconds.

Solving the problem with Matlab instead of math
Now we would like to solve the same problem as above, but not mathematically
but numerically with Matlab’s ode45 function. With ode45, systems of ordinary
differential equations can be solved as

[tValues , unknownsValues] = . . .
ode45 (ODE, tRange , unknownsIn i t ia lVa lues)

Here the "unknowns" will be our two unknowns s and v. Completely to the
right in the ode45 call, for

unknownsIn i t ia lVa lues

we must specify the initial values for the unknowns. In our example, initially
both s and v are zero, so we need to specify two zeros here. Note that this must
be a column array, so specify it either as [0;0] or as [0,0]’. (The quote turns the
[0,0] row into a column.)
For the middle parameter of ode45,

2

tRange

we must specify the time range that we want ode45 to evaluate. We want ODE
to compute the solution from time 0 to the 3.5 seconds it takes the sphere to hit
the ground. The simplest is to specify [0,3.5]. More generally, we can specify

linspace (0 , 3 . 5 , n)

where n is at least two. The advantage of specifying the parameter this way is
that if we specify a bigger n, ode45 will find the unknowns at more intermediate
times between 0 and 3.5. That may be desirable for plotting or interpolating
the found unknowns.
For the first parameter of ode45,

ODE

we must specify the ordinary differential equations that we want ode45 to solve.
The only systems of differential equations that ode45 will solve are of the form

du1

dt = . . .

du2

dt = . . .

...

where u1 and u2 are the unknowns (s and v in our example). So we must divide
Newton’s second law in our equations by m in order to get rid of the m in the
left hand side.
Note next that the ODE must be specified in terms of a function. This function
must take in values of the unknowns, (values that ode45 will provide). The func-
tion must return the corresponding values of the derivatives of the unknowns. A
minimal function that will do that for our problem is function Galileo1 shown
below:

function unknownsDerivatives = Ga l i l e o1 (t , unknowns)

% take s and v out o f unknowns f o r r e a d a b i l i t y
s=unknowns (1) ;
v=unknowns (2) ;

% a c c e l e r a t i o n o f g r a v i t y
g=9.81;

% d e r i v a t i v e ds/ dt
dsdt=v ;

3

% d e r i v a t i v e dvdt
dvdt=g ;

% return them as a ∗column∗ vec t o r
unknownsDerivatives=[dsdt dvdt] ’ ;

end

As far as the output produced by the

[tValues , unknownsValues] = . . .
ode45 (ODE, tRange , unknownsIn i t ia lVa lues)

ode45 call is concerned:

• tValues are the values of the time t at which ode45 has computed s and
v for us. These values will at least include the time values in the tRange
we specified.

• unknownsValues are the values of the unknowns s and v at these times.

In particular,

1. unknownsValues(:,1) are the values of s for the computed times in
tValues.

2. unknownsValues(:,2) are the values of v for the computed times in
tValues.

% c a l l ode45 to f i n d the s o l u t i o n to t =3.5
[tValues , unknownsValues] = . . .

ode45 (’ Ga l i l e o1 ’ , linspace (0 , 3 . 5 , 5 0) , [0 0] ’) ;

% p l o t the s va l u e s found by ode45 aga in s t time
plot (tValues , unknownsValues (: , 1))
% note t h a t we got the s va l u e s out o f " mu l t id imens iona l "
% array unknownsValues (. . . , . . .) by s p e c i f i n g the second
% " index " as 1 (meaning j u s t s va lues , no v va l u e s) and
% the f i r s t " index " as a co lon (meaning ∗ a l l ∗ s va l u e s)

INCLUDING AIR RESISTANCE
So far we have looked only at the ideal case that the sphere can drop through
the air without any resistance. But the air will slightly slow down even a heavy
sphere, and can slow down a light sphere quite a lot.

4

Air resistance makes solving the motion analytically a lot more difficult. Fortu-
nately, with Matlab we can still solve it easily numerically. The only thing we
need to do is include the correct air resistance. In particular, the two equations
become

ds
dt = v

m
dv
dt = mg − Fair

Until you reach Thermal Fluids 1, you will need to google what the expression
for the air resistance of a sphere is. It turns out to be

Fair = CD
1
2ρairv

2A

where CD is the drag coefficient of the sphere, ρair the density of air, and A the
"frontal area" (area seen from the front) of the sphere,

A = πr2

where r is the radius of the sphere.
Also note that when we divide Newton’s equation by the mass of the sphere m,
as we need to do for ode45, we end up with a term Fair/m. So we need to know

5

the mass of the iron sphere. That is simply the density of iron times the volume
of the sphere,

m = ρiron
4π
3 r3

Approximate values for the various constants are

CD ≈ 0.5 ρair ≈ 1.225kg/m3 ρiron ≈ 7, 860kg/m3

We can put the various expressioms in a function Galileo which then includes
the effect of air resistance. However, we should not put any value of r in that
file, as we want to try out many values of r. We cannot and should not change
the function for each individual value of r. So we must add r to the input
arguments of function Galileo. So the final function becomes:

function unknownsDerivatives = Ga l i l e o (t , unknowns , r)

% Function t h a t d e s c r i b e s the ordinary d i f f e r e n t i a l
% equa t ions governing G a l l i l e o ’ s f a l l i n g i ron spheres .
%
% Input : t : the time s ince the s t a r t o f the f a l l .
% unknowns : v e c t o r wi th two components :
% unknowns (1) : the d i s t ance ’ s ’ t h a t the
% sphere has t r a v e l e d down .
% unknowns (2) : the downward v e l o c i t y ’ v ’ o f
% the sphere .
% r : rad ius o f the i ron sphere .
%
% Output : unknownsDerivat ives : the time d e r i v a t i v e s o f

the
% unknowns , to be used by func t i on ode45 :
% unknownsDerivat ives (1) = ds/ dt = v
% unknownsDerivat ives (2) = dv/ dt = (FGravity −

FAir)/m
% where FGravity i s the f o r c e o f g rav i t y , FAir
% the f o r c e o f a i r r e s i s t ance , and m the mass o f
% the iron sphere .

% take s and v out o f unknowns f o r r e a d a b i l i t y
s=unknowns (1) ;
v=unknowns (2) ;

% d e n s i t y o f i ron
rhoIron =7860;

% mass o f the i ron sphere
m=(4/3)∗pi∗ r ^3∗ rhoIron ;

6

% a c c e l e r a t i o n o f g r a v i t y
g=9.81;

% forc e o f g r a v i t y
FGravity=m∗g ;

% approximate drag c o e f f i c i e n t o f a normal s i z e sphere
Cd=0.5;

% d e n s i t y o f a i r a t sea l e v e l
rhoAir =1.225;

% f r o n t a l area o f the iron sphere
A=pi∗ r ^2 ;

% forc e o f a i r r e s i s t a n c e
FAir=Cd∗0 .5∗ rhoAir ∗v^2∗A;

% d e r i v a t i v e ds/ dt
dsdt=v ;

% d e r i v a t i v e dvdt
dvdt=(FGravity−FAir) /m;

% return them as a ∗column∗ vec t o r
unknownsDerivatives=[dsdt dvdt] ’ ;

end

The additional parameter r in function Galileo is a problem because ode45
will not accomodate it. As far as ode45 is concerned, the function ODE must
have exactly two parameters; time and the vector of unknowns.
The solution for this problem is much like the earlier one for fzero. We must
define an anonymous function that has the two arguments that ode45 needs
and that uses Galileo to get its values. That then is the last thing needed in
getting the case with air resistance to work.

Computing a few different cases

% the i n i t i a l v a l u e s o f s and v at time t = 0
unknownsIV=[0 0] ’ ;

% we want the s o l u t i o n at at l e a s t 50 t imes from 0 to 3.5
tRange=linspace (0 , 3 . 5 , 5 0) ;

7

% tr y a 20 cm rad ius
r =0.2 ;
% c a l l ode45 to f i n d the s o l u t i o n to t =3.5
[tValues , unknownsValues] = . . .

ode45 (@(t , y) Ga l i l e o (t , y , r) , tRange , unknownsIV) ;
% p r i n t out the f i n a l d i s t ance
fpr intf (’ For r = %4.2 f , the d i s t anc e i s : %5.2 f \n ’ , . . .

r , unknownsValues (end , 1))
% p l o t the d i s t ance t r a v e l e d s ver sus time t
plot (tValues , unknownsValues (: , 1))

% put a ho ld on p l o t to keep a l l p l o t t e d curve
hold on

% tr y a 10 cm rad ius
r =0.1 ;
% c a l l ode45 to f i n d the s o l u t i o n to t =3.5
[tValues , unknownsValues] = . . .

ode45 (@(t , y) Ga l i l e o (t , y , r) , tRange , unknownsIV) ;
% p r i n t out the f i n a l d i s t ance
fpr intf (’ For r = %4.2 f , the d i s t anc e i s : %5.2 f \n ’ , . . .

r , unknownsValues (end , 1))
% p l o t the d i s t ance t r a v e l e d s ver sus time t
plot (tValues , unknownsValues (: , 1))

% tr y a 5 cm rad ius
r =0.05;
% c a l l ode45 to f i n d the s o l u t i o n to t =3.5
[tValues , unknownsValues] = . . .

ode45 (@(t , y) Ga l i l e o (t , y , r) , tRange , unknownsIV) ;
% p r i n t out the f i n a l d i s t ance
fpr intf (’ For r = %4.2 f , the d i s t anc e i s : %5.2 f \n ’ , . . .

r , unknownsValues (end , 1))
% p l o t the d i s t ance t r a v e l e d s ver sus time t
plot (tValues , unknownsValues (: , 1))

% tr y a 2 cm rad ius
r =0.02;
% c a l l ode45 to f i n d the s o l u t i o n to t =3.5
[tValues , unknownsValues] = . . .

ode45 (@(t , y) Ga l i l e o (t , y , r) , tRange , unknownsIV) ;
% p r i n t out the f i n a l d i s t ance
fpr intf (’ For r = %4.2 f , the d i s t anc e i s : %5.2 f \n ’ , . . .

r , unknownsValues (end , 1))
% p l o t the d i s t ance t r a v e l e d s ver sus time t
plot (tValues , unknownsValues (: , 1))

8

% tr y a 1 cm rad ius
r =0.01;
% c a l l ode45 to f i n d the s o l u t i o n to t =3.5
[tValues , unknownsValues] = . . .

ode45 (@(t , y) Ga l i l e o (t , y , r) , tRange , unknownsIV) ;
% p r i n t out the f i n a l d i s t ance
fpr intf (’ For r = %4.2 f , the d i s t anc e i s : %5.2 f \n ’ , . . .

r , unknownsValues (end , 1))
% p l o t the d i s t ance t r a v e l e d s ver sus time t
plot (tValues , unknownsValues (: , 1))

t i t l e (’ Fa l l i n g Distance o f an Iron Sphere ’)
xlabel (’ t ’)
ylabel (’ s ’)
legend (’ 20 cm ’ , ’ 10 cm ’ , ’ 5 cm ’ , ’ 2 cm ’ , ’ 1 cm ’)
legend (’ l o c a t i o n ’ , ’ southeas t ’)

For r = 0 .20 , the d i s t anc e i s : 59 .91
For r = 0 .10 , the d i s t anc e i s : 59 .74
For r = 0 .05 , the d i s t anc e i s : 59 .40
For r = 0 .02 , the d i s t anc e i s : 58 .41
For r = 0 .01 , the d i s t anc e i s : 56 .87

ADDITIONAL REMARKS
If the system of first order differential equations describes, say, a set of chemical
reactions, there may be a problem with using ode45. Typically, some reactions
proceed very quickly and others much more slowly. The slow reactions imply
that you have to solve the evolution for a relatively long time. But ode45 must
compute accurately over the shortest time scales in order not to get the fast
reactions all wrong. Having to compute accurately over very many short time
intervals is a problem for ode; the computation may take excessive computa-
tional time.
Such a problem, and any other problem where there is a very large spread in
typical time scales, is called "stiff". For stiff problems you want to use a solver
dedicated to such problems. One basic one provided by Matlab is ode15s.

End lesson 4

9

10

	Initialization
	THE PROBLEM WE WANT TO SOLVE
	Solving the problem with Matlab instead of math
	INCLUDING AIR RESISTANCE
	Computing a few different cases
	ADDITIONAL REMARKS
	End lesson 4

