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Initialization

% reduce need l e s s wh i te space
format compact
% reduce i r r i t a t i o n s
more o f f
% s t a r t a d iary
%diary l ec tureN . t x t

INTERPOLATION.
Probably, you have already done interpolation before in other courses. In fact,
if you are in ME Tools, you are doing it there right now. The next few sections
will explain how you can do it much easier and better with Matlab.
As an example problem that requires interpolation, assume that we have placed
a hot bar with its ends in contact with ice water. The temperature of the
bar will then decay over time to 0 degrees Centigrade. We have measured the
temperature of the center of the bar at 6 times spaced half a minute apart.
Taking the first of these times as time zero, the measured data are:

time : 0 0 .5 1 1 .5 2 minutes
Temperature : 14 .60 8 .42 4 .86 2 .80 1 .62 Centigrade

We will define Matlab arrays timeMeasured and TempMeasured as the six mea-
sured times and temperatures respectively.
(Note to some students. This is a lecture about interpolation, not heat conduc-
tion. You do not need to understand heat conduction to follow this lecture. All
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you need to know that we want to interpolate the data above. If you want, you
can think of them instead as tabulated values in a ME Tools table.)
Supposedly unknown to us, the exact temperature is given by

Texact = 14.6 exp(−1.1t);

We will pretend that we only know the measured temperatures. So we have to
interpolate using only those measured data. But afterwards we will cheat and
evaluate the errors using the exact function above. Just to see how well we are
really doing interpolating.
To make that easier, we will create a function TempExactFun to evaluate the
exact temperature that we pretend not to know. Since the function is very
simple and not intended for more general use, we do not need to create a function
file for it. Instead we can define TempExactFun as a "handle" to an anonymous
function.

% de f i n e timeMeasured and TempMeasured as g iven
timeMeasured=[ 0 0 .5 1 1 .5 2 ] ’ ;
TempMeasured=[14.60 8 .42 4 .86 2 .80 1 . 6 2 ] ’ ;

% make TempExactFun a handle to an anonymous func t i on
TempExactFun = @( t ) 14 .6∗exp(−1.1∗ t ) ;
disp ( ’ ’ )

Plot to understand the problem better
Let’s plot the measured five values versus the exact solution that we pretend not
to know. Note that to plot a function, you need to create a set of plot points.
These are different from the measured points and just used for plotting.

% genera te 100 time va l u e s between 0 and 2
t imePlot=linspace (0 , 2 , 100 ) ;
% genera te corresponding exac t temperatures
TempExactPlot=TempExactFun( t imePlot ) ;

% crea t e the p lo t , us ing c i r c l e s f o r the measured po in t s
plot ( t imePlot , TempExactPlot , ’−−k ’ , . . .

timeMeasured , TempMeasured , ’ ok ’ )
legend ( ’ Exact ’ , ’Measured ’ )
t i t l e ( ’Measured and Exact Temperatures ’ )
xlabel ( ’ t ( minutes ) ’ )
ylabel ( ’T ( Centigrade ) ’ )
disp ( ’ ’ )
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Doing the interpolation
We would now like to be able to evaluate the temperature at times in between
the measured five times. This is called "interpolation".
For example, let’s assume that we want to know the temperature at time 0.7,
which is in between measured times 0.5 and 1.
Matlab provides interp1 or spline to find it.

% l e t ’ s e va l ua t e T at t = 0.7 us ing two d i f f e r e n t methods
time=0.7
TempLinear=interp1 ( timeMeasured , TempMeasured , time )
TempSpline=spline ( timeMeasured , TempMeasured , time )

% two reasonab l e va lues , but which one i s b e s t ???
TempExact=TempExactFun( time )
disp ( ’ For a n i c e smooth curve , s p l i n e i n t e r p o l a t i o n i s ’ )
disp ( ’much more accurate than l i n e a r i n t e r p o l a t i o n ! ’ )
e r rL in ea r=abs (TempLinear−TempExact )
e r r Sp l i n e=abs ( TempSpline−TempExact )
disp ( ’ ’ )

time = 0.70000
TempLinear = 6.9960
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TempSpline = 6.7513
TempExact = 6.7600
For a n i c e smooth curve , s p l i n e i n t e r p o l a t i o n i s
much more accurate than l i n e a r i n t e r p o l a t i o n !
e r rL in ea r = 0.23601
e r r Sp l i n e = 0.0086708

Compare the interpolations

% f ind the i n t e r p o l a t e d va l u e s at the p l o t t imes
TempLinearPlot = . . .

interp1 ( timeMeasured , TempMeasured , t imePlot ) ;
TempSplinePlot = . . .

spline ( timeMeasured , TempMeasured , t imePlot ) ;

% compare the i n t e r p o l a t i o n s in a p l o t
plot ( t imePlot , TempExactPlot , ’−−k ’ , . . .

timeMeasured , TempMeasured , ’ ok ’ , . . .
t imePlot , TempLinearPlot , ’ r ’ , . . .
t imePlot , TempSplinePlot , ’b ’ )

legend ( ’ Exact ’ , ’Measured ’ , ’ L inear ’ , ’ Sp l ine ’ )
t i t l e ( ’ L inear and Sp l ine I n t e r p o l a t i o n ’ )
xlabel ( ’ t ( minutes ) ’ )
ylabel ( ’T ( Centigrade ) ’ )

% compare the _maximum_ dev i a t i on s
e r rL inea rP l o t=max(abs ( TempLinearPlot−TempExactPlot ) )
e r r Sp l i n eP l o t=max(abs ( TempSplinePlot−TempExactPlot ) )
disp ( ’The s p l i n e i s everywhere much more accurate . ’ )
disp ( ’ ’ )

e r rL in ea rP l o t = 0.42108
e r r Sp l i n eP l o t = 0.017672
The s p l i n e i s everywhere much more accurate .

Extrapolation
Suppose that the time at which we want to know the temperature is t = 5. This
time is not inside the measured range from 0 to 2. If that happens, we talk
about extrapolation instead of interpolation.

Extrapo lat ion i s much t r i c k i e r than i n t e r p o l a t i o n .

For that reason, interp1 refuses to do it unless you specify an additional "ex-
trap" parameter. Function spline will do it as is.
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% eva l ua t e the va l u e s at t = 5
time=5
TempExact=TempExactFun( time )
TempLinear=interp1 ( timeMeasured , TempMeasured , time , . . .

’ l i n e a r ’ , ’ extrap ’ )
TempSpline=spline ( timeMeasured , TempMeasured , time )
disp ( ’ Extrapo la t ion i s u sua l l y bad news ! ’ )
disp ( ’ ’ )

% Note t ha t both l i n e a r and s p l i n e va l u e s are bad , and
% tha t the s p l i n e i s much worse than l i n e a r . But both
% va lue s are u s e l e s s .

time = 5
TempExact = 0.059667
TempLinear = −5.4600
TempSpline = −14.700
Extrapo lat ion i s u sua l l y bad news !
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SKIP: More on spline interpolation
Often you would want your spline to satisfy end conditions. For example, you
might want it to have given derivatives at the ends. Or be periodic. Given
derivatives at the ends can be achieved using ’spline’ if you add the desired two
values to the function values list. For more complicated cases, consider function
’csape’.

NOISY DATA
What if the measured data have random errors? Suppose, for example, that the
digital thermometer used to to measure the data only displays whole degrees
C? Then the measured data:

Temperature : 14 .60 8 .42 4 .86 2 .80 1 .62 Centigrade

become:

Temperature : 15 8 5 3 2 Centigrade

Then what happens to our interpolations?

% cor r e c t the measured data l i s t
TempMeasured=[15 8 5 3 2 ] ’ ;

% in t e r p o l a t e again at t = 0.7
time=0.7
TempExact=TempExactFun( time )
TempLinear=interp1 ( timeMeasured , TempMeasured , time )
TempSpline=spline ( timeMeasured , TempMeasured , time )
disp ( ’Now the l i n e a r i n t e r p o l a t i o n i s a c t ua l l y b e t t e r ! ’ ) ;
e r rL in ea r=abs (TempLinear−TempExact )
e r r Sp l i n e=abs ( TempSpline−TempExact )

% compare the i n t e r p o l a t i o n s in a p l o t
TempLinearPlot = . . .

interp1 ( timeMeasured , TempMeasured , t imePlot ) ;
TempSplinePlot = . . .

spline ( timeMeasured , TempMeasured , t imePlot ) ;
plot ( t imePlot , TempExactPlot , ’−−k ’ , . . .

timeMeasured , TempMeasured , ’ ok ’ , . . .
t imePlot , TempLinearPlot , ’ r ’ , . . .
t imePlot , TempSplinePlot , ’b ’ )

legend ( ’ Exact ’ , ’Measured ’ , ’ L inear ’ , ’ Sp l ine ’ )
t i t l e ( ’ L inear and Sp l ine In t e rpo l a t i on , Noisy Data ’ )
xlabel ( ’ t ( minutes ) ’ )
ylabel ( ’T ( Centigrade ) ’ )
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% Because o f the noise , the s p l i n e can be worse than
% l i n e a r . The s p l i n e may a l s o s t a r t o s c i l a t i n g i f t h i n g s
% ge t r e a l l y bad . Note the poor s l o p e o f the s p l i n e near
% time 2 . And examine your homework s o l u t i o n s .

% compare the _maximum_ dev i a t i on s
e r rL inea rP l o t=max(abs ( TempLinearPlot−TempExactPlot ) )
e r r Sp l i n eP l o t=max(abs ( TempSplinePlot−TempExactPlot ) )
disp ( ’ There i s no l onge r a r e a l d i f f e r e n c e in e r r o r . ’ )

% The maximum dev i a t i on s are p r a c t i c a l l y speak ing the
% same . There i s no l onger a good reason to use s p l i n e
% i n t e r p o l a t i o n in s t ead o f the s imp ler l i n e a r
% i n t e r p o l a t i o n .
disp ( ’ ’ )

time = 0.70000
TempExact = 6.7600
TempLinear = 6.8000
TempSpline = 6.5300
Now the l i n e a r i n t e r p o l a t i o n i s a c t u a l l y b e t t e r !
e r rL in ea r = 0.040009
e r r Sp l i n e = 0.22999
e r rL inea rP l o t = 0.52550
e r r Sp l i n eP l o t = 0.44453
There i s no l onge r a r e a l d i f f e r e n c e in e r r o r .

SAVING AND RELOADING
You can save all work space variables in a file lecture4.mat using the

save l e c t u r e 4

command. Then next time, you can resume where you left off using the

load l e c t u r e 4

command.
Some things you may want to remember for future use: First, to save only a
few variables, you could use the save FILENAME VAR1 VAR2 ... command.
Second, to read in data from an Excel spreadsheet, use the xlsread command.
To write data to an Excel sheet, use writetable or xlswrite. Use "cell arrays"
if not all data is numerical.

% see what v a r i a b l e s are de f ined
%who
% save them a l l in f i l e l e c t u r e 4 .mat
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%save l e c t u r e 4

% l e t ’ s t e s t i t works OK

% k i l l a l l v a r i a b l e s in the work space
%c l e a r
% check t ha t they are gone (no response )
%who
% re load the v a r i a b l e s from f i l e l e c t u r e 4 .mat
%load l e c t u r e 4
% check t ha t they are back .
%who

CURVE FITTING
Functions interp1 and spline reproduce the given measured data exactly. This
was fine when the measured data were exact. However, the noisy measured
data we are looking at now have errors. Functions interp1 and spline will
reproduce these errors exactly too. And that is bad news because of course we
do not want these errors.
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So if we want something more accurate than interp1 and spline, we must
drop the assumption that our interpolation reproduces all the measured data
exactly. The interpolation we want should be close to the measured data, but
it should not swing around wildly to go exactly through each measured point.
To prevent our interpolation from wildly swinging around, what we can do
choose a relatively simple curve type. Then we can adjust that curve type to
be on average as close as possible to the data points. This idea is called "curve
fitting".
In particular, recall that the exact temperature curve is given by

Texact = 14.6 exp(−1.1t);

However, we are assuming that we do not know that. And given only our noisy
data, there is no way to figure out that the above is the exact temperature.
But suppose that we can guess (based on theoretical arguments not of impor-
tance here) that the desired temperature is of the form

T = A exp(Bt);

Using that as the interpolating function, there is no possibility of wildly swinging
about. And we can still choose values for the constants A and B that produce
the best approximation to the measured data. This is sure to produce a better
result than interp1 and spline.
Of course, the devil is in the details. In particular, how are you going to find the
best A and B? You could select A and B to make the curve go exactly through
two 2 of the 5 measured temperatures. But which 2? If you are very lucky you
could get a quite good approximation that way. But if you are unlucky, you
would get unnecessarily big errors.
It is a much better idea to use all 5 measured data you have, and make the curve
approximate them on average as well as it can. Typically, numerical analysist
take "on average" to mean that they make the average square error as small as
possible. There are both theoretical and practical reasons to do that:

1. Theoretically, in simple cases where the errors are truly random, this gives
the best approximation possible (according to mathematical statistics).

2. Practically, the mathematics of making the average square error as small as
possible is a lot simpler than other possibilities (like making the maximum
error as small as possible).

We do not really need to worry about the latter anyway, as Matlab does that
work for us. What we should get away with is that what we are going to do is
popularly known as the "Method of Least Squares". (Though "Method of Least
Average Square Error" would be more accurate.)
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Fitting a line
Finding the best exponential approximation of the form

T = A exp(Bt)

is actually somewhat messy.
So, for now, we will restrict ourself to simpler approximations. And the simplest
approximation possible is surely by a straight line,

T = C1t+ C2;

(call it TempLinFit in Matlab).
If we settle for that as the interpolating function, Matlab can help us by finding
the "best" (in the least square sense) values for the coefficients C1 and C2 for us.
All we need to do is use a function called polyfit (for "fit a polynomial") on the
measured data. (Note that the straight line relationship above is a polynomial
of degree 1, since the highest power of x is 1.)
And having found the coefficients C1 and C2 of the polynomial with polyfit,
we can use another Matlab function, polyval (for "find values of a polynomial"),
to evaluate the polynomial at whatever times we want.
Note some more important terminology that you will frequently encounter in in-
terpolation. In particular, the expression for T above is linear in the coefficients
C1 and C2 to find. That is unlike for the exponential fit, where the coefficient
B was inside an exponential, and that was then multiplied by A to boot. If
the approximate expression is linear in terms of the unknown coefficients, like
the straight line above, numerical analysists speak of "linear regression". Like
"method of least squares", "linear regression" is another term you should try to
remember.

% f ind the c o e f f i c i e n t s C1 and C2 o f the f i t t e d l i n e
n=1;
CoefLinFit=polyf it ( timeMeasured , TempMeasured , n)

% in t e r p o l a t e again at t = 0.7
time=0.7
TempExact=TempExactFun( time )
TempLinFit=polyval ( CoefLinFit , time )
e r rL inF i t=abs (TempLinFit−TempExact )
disp ( ’OOPS! That i s h o r r i b l e ! ’ )

% l e t ’ s see the l i n e a r f i t in a p l o t
TempLinFitPlot=polyval ( CoefLinFit , t imePlot ) ;
plot ( t imePlot , TempExactPlot , ’−−k ’ , . . .

timeMeasured , TempMeasured , ’ ok ’ , . . .
t imePlot , TempLinFitPlot , ’ y ’ )

legend ( ’ Exact ’ , ’Measured ’ , ’ L inear f i t ’ )
t i t l e ( ’ Least−Square Approximation with a Line ’ )
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xlabel ( ’ t ( minutes ) ’ )
ylabel ( ’T ( Centigrade ) ’ )

% pr in t the error
e r rL inF i tP l o t=max(abs ( TempLinFitPlot−TempExactPlot ) )
disp ( ’That i s ho r r i b l e , but what do you expect ? ’ )
disp ( ’ C l ea r l y no s t r a i g h t l i n e could approximate ’ )
disp ( ’ the exact curve in t h i s example we l l . ’ )
disp ( ’ ’ )

CoefLinFit =
−6.2000 12.8000

time = 0.70000
TempExact = 6.7600
TempLinFit = 8.4600
e r rL inF i t = 1.7000
OOPS! That i s h o r r i b l e !
e r rL inF i tP l o t = 1.8000
That i s ho r r i b l e , but what do you expect ?
C l ea r l y no s t r a i g h t l i n e could approximate
the exact curve in t h i s example we l l .
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Fitting a parabola
We can improve things quite a lot by approximating with a quadratic polyno-
mial, i.e. a parabola,

T = C1t
2 + C2t+ C3;

instead of a straight line.
We will call this TempParFit (parabolic Temperature fit) in Matlab.

% f ind c o e f f i c i e n t s C1 , C2 , and C3
n=2;
CoefParFit=polyf it ( timeMeasured , TempMeasured , n)

% in t e r p o l a t e again at t = 0.7
time=0.7
TempExact=TempExactFun( time )
TempParFit=polyval ( CoefParFit , time )
disp ( ’That i s much be t t e r than the l i n e a r f i t . ’ )

% l e t ’ s see the quadra t i c f i t in a p l o t
TempParFitPlot=polyval ( CoefParFit , t imePlot ) ;
plot ( t imePlot , TempExactPlot , ’−−k ’ , . . .

timeMeasured , TempMeasured , ’ ok ’ , . . .
t imePlot , TempParFitPlot , ’m’ )

legend ( ’ Exact ’ , ’Measured ’ , ’ Quadratic f i t ’ )
t i t l e ( ’ Least−Square Approximation with a Parabola ’ )
xlabel ( ’ t ( minutes ) ’ )
ylabel ( ’T ( Centigrade ) ’ )
disp ( ’Not too bad . ’ )

% pr in t the error
e r rParF i tP lo t=max(abs ( TempParFitPlot−TempExactPlot ) )
disp ( ’But the maximum error , at t=2, i s qu i t e b ig . ’ )
disp ( ’ ’ )

CoefParFit =
3.7143 −13.6286 14.6571

time = 0.70000
TempExact = 6.7600
TempParFit = 6.9371
That i s much be t t e r than the l i n e a r f i t .
Not too bad .
e r rParF i tP lo t = 0.63942
But the maximum error , at t=2, i s qu i t e b ig .
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Fitting a quartic
Let’s try fitting with a quartic,

T = C1t
4 + C2t

3 + C3t
2 + C4t+ C5;

Note however, that now we are no longer fitting, but interpolating. With 5
unknown coefficients, the quartic can go through all 5 measured data points.
This is usually a very bad idea.
In this particular case, the results below are much better than I expected. Fit-
ting curves with too many coefficients can give very bad results. In this case
the only real problem is the slope at t = 2. It might have been much worse.

The gene ra l r u l e o f thumb i s :
Do not i n t e r p o l a t e a polynomial o f degree more than
about the square root o f the number o f data po in t s

Since we have 5 data points and sqrt(5) is about 2, we should not fit a polynomial
of a degree greater than 2.
Exceptions confirm the rule.

% f ind the 5 c o e f f i c i e n t s
n=4;
CoefQuartFit=polyf it ( timeMeasured , TempMeasured , n)
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% in t e r p o l a t e again at t = 0.7
time=0.7
TempExact=TempExactFun( time )
TempQuartFit=polyval ( CoefQuartFit , time )
errQuartFi t=abs (TempQuartFit−TempExact )

% l e t ’ s see the qua r t i c f i t in a p l o t
TempQuartFitPlot=polyval ( CoefQuartFit , t imePlot ) ;
plot ( t imePlot , TempExactPlot , ’−−k ’ , . . .

timeMeasured , TempMeasured , ’ ok ’ , . . .
t imePlot , TempQuartFitPlot , ’ c ’ )

legend ( ’ Exact ’ , ’Measured ’ , ’ Quart ic f i t ’ )
t i t l e ( ’ Least−Square Approximation with a Quart ic ’ )
xlabel ( ’ t ( minutes ) ’ )
ylabel ( ’T ( Centigrade ) ’ )

% pr in t the error
er rQuartF i tP lot=max(abs ( TempQuartFitPlot−TempExactPlot ) )
disp ( ’ ’ )

CoefQuartFit =
2.0000 −10.0000 19.5000 −21.5000 15.0000

time = 0.70000
TempExact = 6.7600
TempQuartFit = 6.5552
errQuartFi t = 0.20479
er rQuartF i tP lot = 0.47325

Extrapolation again
We already saw that extrapolation, i.e. evaluating outside the given range is
fraught with peril. Let’s try the fitted polynomials now.

% ex t r a p o l a t e again at t = 5
time=5
TempExact=TempExactFun( time )
TempLinear=interp1 ( timeMeasured , TempMeasured , time , . . .

’ l i n e a r ’ , ’ extrap ’ )
TempSpline=spline ( timeMeasured , TempMeasured , time )
TempParFit=polyval ( CoefParFit , time )
TempQuartFit=polyval ( CoefQuartFit , time )
disp ( ’ Obviously , the ex t rapo la t ed r e s u l t s are no good . ’ )
disp ( ’ ’ )

time = 5
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TempExact = 0.059667
TempLinear = −4
TempSpline = 59
TempParFit = 39.371
TempQuartFit = 395.00
Obviously , the ex t rapo la t ed r e s u l t s are no good .

SKIP: Fitting an exponential
According to the above, fitting a polynomial of at least quadratic degree worked
reaonably well. But as noted earlier, it should be a much better idea to fit an
exponential of the form

T = A exp(Bt)

to our five data points. The reason is that the exact temperature is of the form
above. You only need to get A (14.6) and B (−1.1) right, and you will get the
right temperature, even in extrapolation.
The reason we did so far not try this is because the above expression is nonlinear
in A and B. Then Matlab’s polyfit function does not work.
However, we can apply a trick. If we take a natural logarithm of the expression
above, we get:
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ln(T ) = ln(A) +Bt

Defining new variables as

C1 = B C2 = ln(A)

this takes the form

ln(T ) = C1t+ C2

That is just fitting by a straight line, but for ln(T ) instead of T ! The latter is
not a problem; when we have T , we can find ln(T ) by just taking a logarithm.
And when we have ln(T ), we can find T by just taking an exponential.
Below we try this out. Note that Matlab uses log for ln (and log10 for log).

% crea t e the measured ln (T) va l u e s
lnTempMeasured=log (TempMeasured ) ;

% f ind C1 and C2
n=1;
CoefExpFit=polyf it ( timeMeasured , lnTempMeasured , n)

% in t e r p o l a t e again at t = 0.7
time=0.7
% note the exp to conver t ln (T) to T
TempExpFit=exp(polyval ( CoefExpFit , time ) )
TempExact=TempExactFun( time )

% l e t ’ s see the e xponen t i a l f i t in a p l o t
TempExpFitPlot=exp(polyval ( CoefExpFit , t imePlot ) ) ;
plot ( t imePlot , TempExactPlot , ’ : k ’ , . . .

timeMeasured , TempMeasured , ’om ’ , . . .
t imePlot , TempExpFitPlot , ’ g ’ )

legend ( ’ Exact ’ , ’Measured ’ , ’ Exponent ia l f i t ’ )
t i t l e ( ’ Exponent ia l l e a s t −square approximation ’ )
xlabel ( ’ t ( minutes ) ’ )
ylabel ( ’T ( Centigrade ) ’ )
errExpFitPlot=max(abs (TempExpFitPlot−TempExactPlot ) )
disp ( ’A b i t d i sappo int ing , maybe . ’ )
disp ( ’ ’ )

% ex t r a p o l a t e again at t = 5
time=5
TempExact=TempExactFun( time )
TempExpFit=exp(polyval ( CoefExpFit , time ) )
disp ( ’ ’ )
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CoefExpFit =
−1.0021 2 .6399

time = 0.70000
TempExpFit = 6.9475
TempExact = 6.7600
errExpFitPlot = 0.58869
A b i t d i sappo int ing , maybe .

time = 5
TempExact = 0.059667
TempExpFit = 0.093409

SKIP: More on the exponential fit
The reason that the maximum error in the exponential fit is not much better
than the quadratic one has to do with our manipulations. Since we changed
unknowns to ln(T ), Matlab is no longer making the average error in T as small
as possible. It is now making the average error in ln(T ) as small as possible.
This can be good or bad, depending on conditions. The error in T is the
"absolute" error in the temperature. The error in ln(T ) is the "relative" error
in the temperature; the error relative to the magnitude of T . In other words,
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the error in ln(T ) gives the percentage error in T . Sometimes you would rather
have the relative error as small as possible, instead of the absolute error.
On the other hand, if we are really interested in getting the smallest absolute
error, there is a trick. Note first that the intial temperature is about 6 times
bigger than the final temperature. To force Matlab to give more attention to
that larger value, we can put it inside the measured data lists 6 times. Similarly,
the value at t = 0.5 is about 3 times the final value and the one at t = 1 about
2 times, So we place these data that many times in the measured data lists.
Another way to achieve a similar effect would be to concentrate the measure-
ments near the start, where the temperature is largest. But we will assume that
the available measurements are as given.

% l e t ’ s check r e l a t i v e e r ro r s ( note the . / )
RelErrParFit=max ( . . .

abs ( TempParFitPlot−TempExactPlot ) . / TempExactPlot )
RelErrExpFit=max ( . . .

abs (TempExpFitPlot−TempExactPlot ) . / TempExactPlot )
disp ( ’The r e l a t i v e e r r o r i s much be t t e r ! ’ )

% l e t s improve the a b s o l u t e error us ing the t r i c k now
timeMeasuredMod = . . .

[ 0 0 0 0 0 0 0 .5 0 .5 0 .5 1 1 1 .5 2 ] ’ ;
TempMeasuredMod = . . .

[ 15 15 15 15 15 15 8 8 8 5 5 3 2 ] ’ ;
lnTempMeasuredMod=log (TempMeasuredMod) ;
n=1;
CoefExpFitMod = . . .

polyf it ( timeMeasuredMod , lnTempMeasuredMod , n)

% in t e r p o l a t e again at t = 0.7
time=0.7
TempExpFitMod=exp(polyval (CoefExpFitMod , time ) )
TempExact=TempExactFun( time )

% compare the i n t e r p o l a t i o n s in a p l o t
TempExpFitModPlot=exp(polyval (CoefExpFitMod , t imePlot ) ) ;
plot ( t imePlot , TempExactPlot , ’ : k ’ , . . .

timeMeasured , TempMeasured , ’om ’ , . . .
t imePlot , TempExpFitModPlot , ’ c ’ )

legend ( ’ Exact ’ , ’Measured ’ , ’ Modif ied exponent i a l f i t ’ )
t i t l e ( ’ Modif ied exponent i a l l e a s t −square approximation ’ )
xlabel ( ’ t ( minutes ) ’ )
ylabel ( ’T ( Centigrade ) ’ )
disp ( ’Not too bad . ’ )
disp ( ’ ’ )
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% compare the _maximum_ dev i a t i on s
errExpFitModPlot = . . .

max(abs (TempExpFitModPlot−TempExactPlot ) )
disp ( ’The e r r o r i s now much sma l l e r than anything seen ’ )
disp ( ’ b e f o r e . And we a l s o f o l l ow the s l ope o f the ’ )
disp ( ’ exact curve very we l l . ’ )
disp ( ’ ’ )

% ex t r a p o l a t e again at t = 5
time=5
TempExact=TempExactFun( time )
TempExpFit=exp(polyval ( CoefExpFit , time ) )
TempExpFitMod=exp(polyval (CoefExpFitMod , time ) )
disp ( ’Not too bad . ’ )
disp ( ’ ’ )

RelErrParFit = 0.39526
RelErrExpFit = 0.16718
The r e l a t i v e e r r o r i s much be t t e r !
CoefExpFitMod =

−1.0388 2 .6746
time = 0.70000
TempExpFitMod = 7.0102
TempExact = 6.7600
Not too bad .

errExpFitModPlot = 0.27342
The e r r o r i s now much sma l l e r than anything seen
be f o r e . And we a l s o f o l l ow the s l ope o f the
exact curve very we l l .

time = 5
TempExact = 0.059667
TempExpFit = 0.093409
TempExpFitMod = 0.080485
Not too bad .

MORE MEASUREMENTS
If we would measure a lot more points than the 5 we have, and the errors in these
measurements would be random, we could get a much better approximation.
Unfortunately, rounding of temperatures to whole degrees is not random. It
creates a deterministic "staircase" of numbers. But we can try anyway.
Note: We will cheat, and use the exact solution, which we are not supposed to
know, to avoid doing and typing in 41 measurements.
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% crea t e the new 41 "measured " data
timeMeasured2=linspace (0 , 2 , 41 ) ;
% ’ round ’ rounds to whole numbers
TempMeasured2=round(TempExactFun( timeMeasured2 ) ) ;

% use some more p l o t po in t s now too
t imePlot2=linspace (0 , 2 , 300 ) ;
TempExactPlot2=TempExactFun( t imePlot2 ) ;
disp ( ’ ’ )

Interpolation with more data
Note that the interpolations do not improve if we use more noisy points.

% compare the i n t e r p o l a t i o n s in a p l o t
TempLinearPlot2 = . . .

interp1 ( timeMeasured2 , TempMeasured2 , t imePlot2 ) ;
TempSplinePlot2 = . . .

spline ( timeMeasured2 , TempMeasured2 , t imePlot2 ) ;
plot ( t imePlot2 , TempExactPlot2 , ’−−k ’ , . . .

timeMeasured2 , TempMeasured2 , ’ ok ’ , . . .
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t imePlot2 , TempLinearPlot2 , ’ r ’ , . . .
t imePlot2 , TempSplinePlot2 , ’b ’ )

legend ( ’ Exact ’ , ’Measured ’ , ’ L inear ’ , ’ Sp l ine ’ )
t i t l e ( ’ L inear and Sp l ine I n t e r p o l a t i o n ’ )
xlabel ( ’ t ( minutes ) ’ )
ylabel ( ’T ( Centigrade ) ’ )
disp ( ’ Seems worse than be f o r e . ’ )
disp ( ’ ’ )

% compare the _maximum_ dev i a t i on s
e r rL inea rP l o t
e r rL inea rP lo t2=max(abs ( TempLinearPlot2−TempExactPlot2 ) )
e r r Sp l i n eP l o t
e r r Sp l i n eP l o t 2=max(abs ( TempSplinePlot2−TempExactPlot2 ) )
disp ( ’Now the s p l i n e i s worse that l i n e a r ! ’ )
disp ( ’ ’ )

Seems worse than be f o r e .

e r rL in ea rP l o t = 0.52550
e r rL inea rP lo t2 = 0.48471
e r r Sp l i n eP l o t = 0.44453
e r rSp l i n eP l o t 2 = 0.55055
Now the s p l i n e i s worse that l i n e a r !

Quartic fit with more data

% repea t the qua r t i c f i t
n=4;
CoefQuartFit2=polyf it ( timeMeasured2 , TempMeasured2 , n)

% compare the i n t e r p o l a t i o n s in a p l o t
TempQuartFitPlot2=polyval ( CoefQuartFit2 , t imePlot2 ) ;
plot ( t imePlot2 , TempExactPlot2 , ’−−k ’ , . . .

timeMeasured2 , TempMeasured2 , ’ ok ’ , . . .
t imePlot2 , TempQuartFitPlot2 , ’ c ’ )

legend ( ’ Exact ’ , ’Measured ’ , ’ Quart ic f i t ’ )
t i t l e ( ’ Least−Square Approximation with a Quart ic ’ )
xlabel ( ’ t ( minutes ) ’ )
ylabel ( ’T ( Centigrade ) ’ )
disp ( ’Over most o f the range , t h i s i s much be t t e r than ’ )
disp ( ’ the r e s u l t f o r 5 measured va lues ( which went ’ )
disp ( ’ through a l l measured po in t s ) . ’ )
disp ( ’ ’ )
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% compare the _maximum_ dev i a t i on s
er rQuartF i tP lot
er rQuartF i tP lot2 = . . .

max(abs ( TempQuartFitPlot2−TempExactPlot2 ) )
disp ( ’The d i s appo in t i ng maximum e r r o r i s due to the ’ )
disp ( ’ f a c t that the f i n a l " measured " po in t s are a l l too ’ )
disp ( ’ high . Have a good look at the end o f the graph ! ’ )
disp ( ’ ’ )

CoefQuartFit2 =
1.2249 −6.0707 13.1791 −18.2949 14.8320

Over most o f the range , t h i s i s much be t t e r than
the r e s u l t f o r 5 measured va lue s ( which went
through a l l measured po in t s ) .

e r rQuartF i tP lot = 0.47325
errQuartF i tP lot2 = 0.37455
The d i s appo in t ing maximum e r r o r i s due to the
f a c t that the f i n a l " measured " po in t s are a l l too
high . Have a good look at the end o f the graph !
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SKIP: Exponential fit with more data

% repea t the e xponen t i a l f i t
lnTempMeasured2=log (TempMeasured2 ) ;
n=1;
CoefExpFit2=polyf it ( timeMeasured2 , lnTempMeasured2 , n)

% compare the i n t e r p o l a t i o n s in a p l o t
TempExpFitPlot2=exp(polyval ( CoefExpFit2 , t imePlot2 ) ) ;
plot ( t imePlot2 , TempExactPlot2 , ’ : k ’ , . . .

timeMeasured2 , TempMeasured2 , ’ ok ’ , . . .
t imePlot2 , TempExpFitPlot2 , ’ g ’ )

legend ( ’ Exact ’ , ’Measured ’ , ’ Exponent ia l f i t ’ )
t i t l e ( ’ Least−Square Approximation with an Exponent ia l ’ )
xlabel ( ’ t ( minutes ) ’ )
ylabel ( ’T ( Centigrade ) ’ )
disp ( ’ ’ )

% compare the _maximum_ dev i a t i on s
errExpFitPlot
errExpFitPlot2=max(abs (TempExpFitPlot2−TempExactPlot2 ) )
disp ( ’ Clear ly , that i s qu i t e good . ’ )
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disp ( ’ ’ )

CoefExpFit2 =
−1.0704 2 .6558

errExpFitPlot = 0.58869
errExpFitPlot2 = 0.36353
Clear ly , that i s qu i t e good .

INTEGRALS
It is easy to do determined integrals, with given limits, using Matlab. Just use
the integral function. (Octave still uses the old name quad.)
As an example (which you do not actually have to understand), suppose we want
to know how much radiation q the bar in our example emits per unit surface
area while cooling down. Assuming that the bar surface is perfectly black, the
Stefan-Boltzmann law says that the radiation emitted per unit area and unit
time is given by

q̇ = σT 4 σ = 5.670373 10−8 W/m2K4
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where T is the absolute temperature in K (Kelvin) and σ is called the "Stefan-
Boltzmann constant." To get the q we want, we need to integrate q̇ above from
time 0 to time 2:

q =
∫ 2

0
σT 4 dt

If you do not understand why, that is OK. All you need to know is that

1. We want to do the integral above.

2. Since T above is in K, we must add T0 = 273.15 to our temperatures,
which are in Centigrade. Also we need to insert a factor 60 to convert our
times from minutes to seconds.

3. In Matlab integration is nowadays done by a function called integral.
Octave still uses the old name quad.

4. Function integral (or quad) can only integrate functions. You cannot use
it to integrate measured data or plot points! (There are different methods
to do that, like "spline integration", but we do not cover those here.)

% the Stefan−Boltzmann cons tant in W/m^2 K^4:
sigma=5.670373E−8;

% 0 degrees Cent igrade in Kelv in
T0=273.15;

The exact integral
Let’s find the exact integral first using our knowledge of Calculus I. To integrate

q =
∫ 2

0
σ (A exp(Bt) + T0)4 dt A = 14.6, B = −1.1

with respect to time, change integration variable to u = A exp(Bt) and take it
from there.

% names f o r the cons tan t s in TempExact = A exp (B t )
A=14.6;
B=−1.1;

% eva l ua t e the s t a r t ( t=0) and end ( t=2) va l u e s o f u
u1=A;
u2=A∗exp(B∗2) ;

% eva l ua t e the i n t e g r a l as found by c a l c u l u s

26



qTrue=60∗sigma ∗ ( . . .
1/4∗( u2^4−u1^4) + . . .
4/3∗T0∗( u2^3−u1^3) + . . .
3∗T0^2∗(u2^2−u1^2) + . . .
4∗T0^3∗(u2−u1 ) + . . .
T0^4∗( log ( u2 )−log ( u1 ) ) ) /B;

fpr intf ( ’ Truly exact : %.3 f \n ’ , qTrue )

Truly exact : 41301.515

Numerical integrations
Next let’s use numerical integration, i.e. integral or quad, to find the integral.
Note that there will be an error created by the numerical integration, even if
we integrate the exact temperature.
We already noted before that integral or quad can only integrate a function.
So typically, we will provide it an anonymous function of the time t, in

@( t ) FUNCTION( . . . , t , . . . )

notation, where t is the time and dots stand for other parameters of FUNCTION.
Matlab functions that can be used to create FUNCTION are TempExactFun, interp1,
spline, and polyval (after their other parameters have been found). Do not
try to put in arrays (like ...Measured or ...Plot) except as parameters of these
functions!
Note that all obtained values below will be pretty accurate:

Typ i ca l l y :
Numerical e r r o r s tend to become l e s s in i n t e g r a l s .

% try numerical i n t e g r a t i o n o f the exac t temperature
qExact=60∗sigma∗quad ( . . .

@( t ) (TempExactFun( t )+T0) .^4 , 0 , 2 ) ;
fpr intf ( ’ Numerical i n t e g r a t i o n : %.3 f Error : %.1E%%\n ’ , . . .

qExact , abs ( qExact−qTrue ) /qTrue ∗100)
disp ( ’As shown , numerica l i n t e g r a t i o n f o r a smooth ’ )
disp ( ’ f unc t i on l i k e t h i s w i l l be very accurate . ’ )
disp ( ’The e r r o r i s sma l l e r than the round−o f f . ’ )

% try numerical i n t e g r a t i o n o f the l i n e a r i n t e r p o l a t i o n
qLinear=60∗sigma∗quad ( . . .

@( t ) ( interp1 ( timeMeasured , TempMeasured , t )+T0) .^4 , 0 , 2 ) ;
fpr intf ( ’ L inear i n t e r p o l a t i o n : %.3 f Error : %.3 f%%\n ’ , . . .

qLinear , abs ( qLinear−qTrue ) /qTrue ∗100)

% try numerical i n t e g r a t i o n o f the s p l i n e i n t e r p o l a t i o n
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qSp l ine=60∗sigma∗quad ( . . .
@( t ) ( spline ( timeMeasured , TempMeasured , t )+T0) .^4 , 0 , 2 ) ;

fpr intf ( ’ Sp l in e i n t e r p o l a t i o n : %.3 f Error : %.3 f%%\n ’ , . . .
qSpl ine , abs ( qSpl ine−qTrue ) /qTrue ∗100)

% try numerical i n t e g r a t i o n o f the pa ra bo l i c f i t
qParFit=60∗sigma∗quad ( . . .

@( t ) (polyval ( CoefParFit , t )+T0) .^4 , 0 , 2 ) ;
fpr intf ( ’ Parabo l i c F i t : %.3 f Error : %.3 f%%\n ’ , . . .

qParFit , abs ( qParFit−qTrue ) /qTrue ∗100)

% try numerical i n t e g r a t i o n o f the qua r t i c f i t
qQuartFit=60∗sigma∗quad ( . . .

@( t ) (polyval ( CoefQuartFit , t )+T0) .^4 , 0 , 2 ) ;
fpr intf ( ’ Quart ic Fi t : %.3 f Error : %.3 f%%\n ’ , . . .

qQuartFit , abs ( qQuartFit−qTrue ) /qTrue ∗100)
disp ( ’ ’ )

Numerical i n t e g r a t i o n : 41301.515 Error : 0 . 0E+00%
As shown , numerica l i n t e g r a t i o n f o r a smooth
func t i on l i k e t h i s w i l l be very accurate .
The e r r o r i s sma l l e r than the round−o f f .
L inear i n t e r p o l a t i o n : 41434.104 Error : 0.321%
Sp l ine i n t e r p o l a t i o n : 41307.239 Error : 0.014%
Parabo l i c F i t : 41352.074 Error : 0.122%
Quart ic Fi t : 41297.198 Error : 0.010%

SKIP: More on integration
In this section we will show how the exponential curve fits work out.
We will also show how you can integrate the polynomial fits exactly if you want.
Not only does this eliminate all integration errors, however small, Matlab can
also do it much more quickly. That could be important if you have to do a lot
of these integrals. The trick is to use function polyint instead of integral or
quad to do the integration.

% try numerical i n t e g r a t i o n o f the e xponen t i a l f i t
B=CoefExpFit (1 ) ;
lnA=CoefExpFit (2 ) ;
qExpFit=quad(@( t ) (exp(B∗ t+lnA )+T0) .^4 , 0 , 2 ) ∗60∗ sigma ;
fpr intf ( ’ Exponent ia l F i t : %.3 f Error : %.3 f%%\n ’ , . . .

qExpFit , abs ( qExpFit−qTrue ) /qTrue ∗100)

% try numerical i n t e g r a t i o n o f the t r i c k e d one too
B=CoefExpFitMod (1) ;
lnA=CoefExpFitMod (2) ;
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qExpFitMod=quad(@( t ) (exp(B∗ t+lnA )+T0) .^4 , 0 , 2 ) ∗60∗ sigma ;
fpr intf ( ’ Exponent ia l Fit , Mod: %.3 f Error : %.3 f%%\n ’ , . . .

qExpFitMod , abs ( qExpFitMod−qTrue ) /qTrue ∗100)

% in t e g r a t e the pa r a bo l i c f i t e x a c t l y now
disp ( ’ Exact i n t e g r a t i o n o f the pa rabo l i c f i t : ’ )
% f i r s t conver t the po lynomia l to Kelv in by adding T0
tempC=CoefParFit ;
tempC(end)=tempC(end)+T0 ;
% now square t ha t po lynomia l tw ice to ge t T^4
tempC=conv (tempC , tempC) ;
tempC=conv (tempC , tempC) ;
% f ind the a n t i d e r i v a t i v e po lynomia l us ing p o l y i n t
tempC=po ly i n t (tempC) ;
% eva l ua t e the i n t e g r a l between 0 and 2 with t ha t
tempInt=polyval (tempC , 2 )−polyval (tempC , 0 ) ;
% add the remaining f a c t o r s
qParExact=tempInt ∗60∗ sigma ;
fpr intf ( ’ Quadratic Fit , exact : %.3 f Error : %.3 f%%\n ’ , . . .

qParExact , abs ( qParExact−qTrue ) /qTrue ∗100)

% in t e g r a t e the qua r t i c f i t the same way
disp ( ’ Exact i n t e g r a t i o n o f the qua r t i c f i t : ’ )
% f i r s t conver t the po lynomia l to Kelv in by adding T0
tempC=CoefQuartFit ;
tempC(end)=tempC(end)+T0 ;
% now square t ha t po lynomia l tw ice to ge t T^4
tempC=conv (tempC , tempC) ;
tempC=conv (tempC , tempC) ;
% f ind the a n t i d e r i v a t i v e po lynomia l us ing p o l y i n t
tempC=po ly i n t (tempC) ;
% eva l ua t e the i n t e g r a l between 0 and 2 with t ha t
tempInt=polyval (tempC , 2 )−polyval (tempC , 0 ) ;
% add the remaining f a c t o r s
qQuartExact=tempInt ∗60∗ sigma ;
fpr intf ( ’ Quart ic Fit , exact : %.3 f Error : %.3 f%%\n ’ , . . .

qQuartExact , abs ( qQuartExact−qTrue ) /qTrue ∗100)
disp ( ’ ’ )

Exponent ia l F i t : 41384.031 Error : 0.200%
Exponent ia l Fit , Mod: 41422.232 Error : 0.292%
Exact i n t e g r a t i o n o f the pa rabo l i c f i t :
Quadratic Fit , exact : 41352.074 Error : 0.122%
Exact i n t e g r a t i o n o f the qua r t i c f i t :
Quart ic Fit , exact : 41297.198 Error : 0.010%
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DERIVATIVES
Sometimes we are interested in the derivative of the quantity in question. In
the present example, it is a measure of how much heat leaks out of the bar per
unit time.

The exact derivative
Since

Texact = A exp(Bt) A = 14.6, B = −1.1

its derivative is simply

dTexact

dt = BTexact B = −1.1

(That follows from differentiating the exponential using the chain rule.)

% de r i v a t i v e o f TempExact found a n a l y t i c a l l y
derTempExactPlot=−1.1∗TempExactPlot ;

Numerical differentiation
For the linear, quadratic, and quartic fits, we can use the fact that Matlab
function polyder will find the coefficients of the derivative polynomial for us.
Then we can use our old faithful polyval to evaluate that derivative polynomial.
In this section we will use these methods to find the derivative of the temperature
at our plot points, and then plot the results. We will compare the quadratic for
5 noisy measurements and the quartic for 41.
Note that the results will be pretty bad.

Typ i ca l l y :
Errors tend to become much worse in d e r i v a t i v e s .

We will also plot the quartic for 41 noisy data points when the noise is random,
rather than due to a systematic rounding error. This will allow the method of
least squares to work like it is designed for. The results will be much better.

% de r i v a t i v e o f the pa ra bo l i c f i t po lynomia l
derCoefParFit=polyder ( CoefParFit ) ;
% use i t to e va l ua t e the d e r i v a t i v e at the p l o t po in t s
derTempParFitPlot=polyval ( derCoefParFit , t imePlot ) ;

% de r i v a t i v e o f the qua r t i c f i t polynomial , 41 po in t s
derCoefQuartFit2=polyder ( CoefQuartFit2 ) ;
% use i t to e va l ua t e the d e r i v a t i v e at the p l o t po in t s
derTempQuartFitPlot2=polyval ( derCoefQuartFit2 , t imePlot2 ) ;
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% qua r t i c f i t , 41 po in t s wi th random erro r s
randn( " seed " ,9 ) ;
TempMeasured3 = . . .

TempExactFun( timeMeasured2 )+0.25∗randn (1 , 41 ) ;
n=4;
CoefQuartFit3=polyf it ( timeMeasured2 , TempMeasured3 , n)
% de r i v a t i v e o f the qua r t i c f i t polynomial , 41 po in t s
derCoefQuartFit3=polyder ( CoefQuartFit3 ) ;
% use i t to e va l ua t e the d e r i v a t i v e at the p l o t po in t s
derTempQuartFitPlot3=polyval ( derCoefQuartFit3 , t imePlot2 ) ;

% p l o t i t
plot ( t imePlot , derTempExactPlot , ’−−k ’ , . . .

t imePlot , derTempParFitPlot , ’m’ , . . .
t imePlot2 , derTempQuartFitPlot2 , ’ c ’ , . . .
t imePlot2 , derTempQuartFitPlot3 , ’ g ’ )

axis ( [ 0 2 −20 0 ] )
legend ( ’ Exact ’ , . . .

’ Quadratic f i t , 5 no i sy data po in t s ’ , . . .
’ Quart ic f i t , 41 no i sy data po in t s ’ , . . .
’ idem , but with ∗random∗ e r r o r s ’ )

legend ( ’ l o c a t i o n ’ , ’ southeas t ’ )
t i t l e ( ’ Comparison o f Pred ic ted F i r s t De r i va t i v e s ’ )
xlabel ( ’ t ( minutes ) ’ )
ylabel ( ’dT/dt ( Cent igrade /min ) ’ )
disp ( ’The polynomial f i t d e r i v a t i v e s are pre t ty bad . ’ )
disp ( ’The qua r t i c i s no be t t e r than the quadrat i c . ’ )
disp ( ’However , i f the no i s e i s r e a l l y random , the ’ )
disp ( ’ qua r t i c can become qu i t e good f o r a l o t o f ’ )
disp ( ’ data po in t s . ’ )
disp ( ’ ’ )

CoefQuartFit3 =
0.48051 −3.22981 9.56650 −16.60748 14.70296

The polynomial f i t d e r i v a t i v e s are pre t ty bad .
The qua r t i c i s no be t t e r than the quadrat i c .
However , i f the no i s e i s r e a l l y random , the
qua r t i c can become qu i t e good f o r a l o t o f
data po in t s .

SKIP: More on differentiation
In this section we show the derivatives of the exponential fits obtained earlier.
As expected, these are much more reasonable. Both the exponential fit for 41
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noisy measurements, as well as the modified fit for 5 noisy measurements are
plotted.
How about the derivative of your beloved interpolated spline? Well, linear and
spline interpolation are described by "piecewise polynomials": there is a different
polynomial in each segment between measured points. The bad thing is that the
idiots at MathWorks never defined a function to find the derivatives of piecewise
polynomials. If you want the derivative of your spline, look for ’ppder’ or ’ppdiff’
provided by third parties, (where pp is an acronym for "piecewise polynomial".)
Octave provides ppder. This is used below to plot the derivative of the spline
with 5 exact measurements (pretty good). It is also used to plot the derivative
of the spline with 41 noisy measurements (very bad).

Remember :
Sp l in e d i f f e r e n t i a t i o n might be good ,

but no i sy data are a big problem .

Note added 9/22/2018: Matlab R2018b now seems to have fnder for derivatives
(and fnint for integrals) of piecewise polynomials. Unfortunately, we are still
using Matlab R2017b at the time of writing.

% de r i v a t i v e s o f TempExpFit2
derTempExpFitPlot2=CoefExpFit2 (1 ) ∗TempExpFitPlot2 ;

% piecew i s e po lynomia l c o e f f i c i e n t s o f the s p l i n e
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ppSpl ine=spline ( timeMeasured , TempExactFun( timeMeasured ) ) ;
% f ind the c o e e f i c i e n t s o f the d e r i v a t i v e
derppSpl ine=ppder ( ppSpl ine ) ;
% eva l ua t e at the p l o t po in t s
derTempSplinePlot=ppval ( derppSpl ine , t imePlot ) ;

% piecew i s e po lynomia l c o e f f i c i e n t s o f the s p l i n e
ppSpl ine2=spline ( timeMeasured2 , TempMeasured2 ) ;
% f ind the c o e e f i c i e n t s o f the d e r i v a t i v e
derppSpl ine2=ppder ( ppSpl ine2 ) ;
% eva l ua t e at the p l o t po in t s
derTempSplinePlot2=ppval ( derppSpl ine2 , t imePlot2 ) ;

% p l o t i t
plot ( t imePlot , derTempExactPlot , ’ : k ’ , . . .

t imePlot2 , derTempExpFitPlot2 , ’ g ’ , . . .
t imePlot , derTempSplinePlot , ’b ’ , . . .
t imePlot2 , derTempSplinePlot2 , ’m’ )

axis ( [ 0 2 −20 0 ] )
legend ( ’ Exact ’ , . . .

’ Exponent ia l f i t , 41 no i sy data po in t s ’ , . . .
’ Sp l ine , 5 exact data po in t s ’ , . . .
’ Sp l ine , 41 no i sy data po in t s ’ )

legend ( ’ l o c a t i o n ’ , ’ southeas t ’ )
t i t l e ( ’ Comparison o f p r ed i c t ed f i r s t d e r i v a t i v e ’ )
xlabel ( ’ t ( minutes ) ’ )
ylabel ( ’dT/dt ( Cent igrade /min ) ’ )
disp ( ’The exponent i a l f i t d e r i v a t i v e i s r ea sonab l e . ’ )
disp ( ’The s p l i n e i s good f o r exact data , but no i sy ’ )
disp ( ’ data can be a big problem . ’ )
disp ( ’ ’ )

The exponent i a l f i t d e r i v a t i v e i s r ea sonab l e .
The s p l i n e i s good f o r exact data , but no i sy
data can be a big problem .

End lesson 3

33



34


	Initialization
	INTERPOLATION.
	Plot to understand the problem better
	Doing the interpolation
	Compare the interpolations
	Extrapolation
	SKIP: More on spline interpolation
	NOISY DATA
	SAVING AND RELOADING
	CURVE FITTING
	Fitting a line
	Fitting a parabola
	Fitting a quartic
	Extrapolation again
	SKIP: Fitting an exponential
	SKIP: More on the exponential fit
	MORE MEASUREMENTS
	Interpolation with more data
	Quartic fit with more data
	SKIP: Exponential fit with more data
	INTEGRALS
	The exact integral
	Numerical integrations
	SKIP: More on integration
	DERIVATIVES
	The exact derivative
	Numerical differentiation
	SKIP: More on differentiation
	End lesson 3

