2 SOLVING EQUATIONS

Contents
Initialization| 1
THE PROBLEM WE WANT TO SOLVE 2
F T E E E T 2
|IPlay a bit with the function| 3
PLOT TO UNDERSTAND THE PROBLEM BETTER 3
|Plot the error for 0 < omega < 10| 3
Try improving the plot| 4
Try, try, again| 4
F TE ES F THE FREQUE E 6
[Finding the value of the lowest frequency| 6
|[Find many more frequencies| 8
[Trick: modify the equation| 9
HOW ABOUT IF THE STIFFNESS 1S NOT 177 12
[But how do we tell fzero what k to use??| 13
T T THE FREQUE E E 15

GETTING THE K VALUE DIRECTLY FROM THE KEYBOARDI| 16

ADDITIONAL REMARKS] 17

17

Initialization

Things to do before an interactive section. (Emacs users also set C-x f fill
column to 57.)

% reduce meedless whitespace
format compact

% reduce irritations

more off

% start a diary

%diary lecture ?. txt

THE PROBLEM WE WANT TO SOLVE

We want to find the frequencies (tones) of a string with one end rigidly attached

and the other end flexibly attached.

It can be shown that all valid frequencies omega must satisfy the equation
—kw = tan(w)

Here k is a constant depending on the string properties. The above equation
does not have an analytic solution (unlike a quadratic equation, say.)
Our problem is to figure out what those valid frequencies are using Matlab
function fzero. We will also learn how to plot functions using plot.

FUNCTIONS DESCRIBING ERRORS IN EQUATIONS
If we should have that

—kw = tan(w)

then

Error(w) = tan(w) + kw

is the error in the equation. We can put that in a Matlab function file. For
now, we will assume that k equals 1. For that reason, we will call the function
freqEqlError. Its contents are:

function error = freqEqlError (omega)

% This function returns the error in the equation

% satisfied by the frequencies of a string with one end
% flexibly attached. The scaled attachment flexibility k
% is assumed to be 1.

%

% Input:

% omega: the frequency to test, in radians

% Output:

% error: zero if omega is a correct frequency (tone)
% of the string, nonzero if it is not.
%
%
%

o Advanced analysis taught in Analysis in Mechanical

% Engineering II shows that the equation the frequencies
% must satisfy is:

% — k omega = tan(omega)

% So if the frequency is not right, the error in the

% equation (difference between the right and left hand
% sides) is:

% error = tan(omega) + k omega

% Note that omega is in radians and do not forget the
semi—colon

error = tan(omega) + omega;

end

Play a bit with the function

% see whether matlab can see the function
%help freqEqlError

% for omega=0 the error is zero but then there is no
sound!
err0=freqEqlError (0)

% for omega=1 the error is mot zero, so omega=1 is _ not_
% a frequency of wibration of this string
errl=freqEqlError (1)

% how about 27
err2=freqEqlError (2)

% how about 1.9 or 2.17
errlp9=freqEqlError (1.9)
err2pl=freqEqlError (2.1)

err0 = 0

errl = 2.5574
err2 = —0.18504
errlp9 = —1.0271

err2pl = 0.39015

PLOT TO UNDERSTAND THE PROBLEM BETTER

Somehow we must find the locations where the error is zero. That is not that
straightforward. So maybe we should first examine the functions in the right
and left hand sides by plotting them.

Plot the error for 0 < omega < 10

The Matlab ’plot’ function plots curves given enough points on the curves.

% generate 201 omega values between 0 and 10
omegaVals=[0:0.05:10];

% this makes omegaVals a row of numbers
Z%omegaVals

% another way to do the same thing
omegaVals=linspace (0,10,201);
%omegaVals

% compute the corresponding errors
errorVals=freqEqlError (omegaVals) ;
%errorVals

% plot (unmazimize this window to have the plot wvisible)
plot (omegaVals’,errorVals ")

% Note: The reason for the quotes is that plot likes to
% have its numbers as columns instead as rows.

Try improving the plot

% to find out how to modify the plot
%help plot
% (also google ’'matlab chart line properties ’)

% ——: dashed line, o: circle symbols, r: red line
plot (omegaVals’ ,errorVals ', >—or’ ,’LineWidth’ ,2)

Try, try, again

300

250

200

150 [

100 [

-50

10

O — — e e e

300

250 0
200 -
150 [
100 [

10

% redo from scratch
plot (omegaVals’ ,errorVals ’)

% now reduce the wvertical extent of the plot
axis([—-0 10 —10 10])

% and add a grid
grid on

% put the z—azis at y=0
Y%set(gca)

set (gca, *xaxislocation

)) 3 3)
, origin’)

% add labels on the z— and y—azes
xlabel (’omega’)
ylabel(’error’)

% add a title
title (’Frequency Equation Error’)

Frequency Equation Error

error
L

omega

FINDING ACCURATE VALUES FOR THE FREQUEN-
CIES

To keep it simple, let’s keep k=1 for now and find the lowest frequency first.

Finding the value of the lowest frequency

We want to find the lowest positive frequency, call it omegal, where freqEqlError
is zero.

Matlab can find zeros ('roots’) of functions using the fzero library function.
Warning: The word "root" as used here has nothing to do with a square root.
It simply means the position where a function is zero. For example if f(z) =0
when x = a, then a is a "root" of the equation f(x) = 0.

% Get a clue how to use fzero first
%help fzero

% tell fzero to start searching from omega=2

disp(’ ")

omegal Guess=2

omegal=fzero(’'freqEqlError’ ,omegalGuess)

disp (’This happens to be OK.’)

disp (’But it might just as well have failed.’)

disp(’It only works started close enough to the answer.’)

% suppose we start at .5 pi

disp(* ')

omegalGuess=0.5%pi

omegal=fzero(’freqEqlError’ ,omegalGuess)

disp(’Oops. In fact we could have ended up xanywherex!”)
disp(’(If there is no singularity , Matlab usually gets’)
disp(’it right. But Octave frequently gets it wrong.)’)

The __safe_ way is to tell fzero to search in a small
interval that contains only the root we want, like from
1.9 to 2.1. Note from above that the errors are of
opposite sign at those two wvalues, so it xmustx be
zero somewhere in between.

N NN KX

% let fzero search between 1.9 and 2

disp(’)

omegallnterval=[1.9 2.1]

disp(’The end points must be of different sign.’)
disp(’One root, and no singularities , inside.’)
freqEqlError (omegallnterval)

disp ('That seems to be OK!)

omegal=fzero('freqEqlError’ ,omegallnterval)

disp (’Same as before.’)
disp (’But this method was absolutely safe!’)

omegalGuess = 2

omegal = 2.0288

This happens to be OK.

But it might just as well have failed.

It only works started close enough to the answer.

omegalGuess = 1.5708

omegal = 1.5708

Oops. In fact we could have ended up xanywherex!
(If there is no singularity , Matlab usually gets
it right. But Octave frequently gets it wrong.)

omegallnterval =
1.9000 2.1000
The end points must be of different sign.
One root, and no singularities , inside.
ans =
—1.02710 0.39015
That seems to be OK!
omegal 2.0288
Same as before.
But this method was absolutely safe!

Find many more frequencies

How about the other frequencies? This is going to be messy. Let’s look a bit
better at the plot first.

% redo from scratch (for publishing purposes)
plot (omegaVals’ ,errorVals ’)

% now reduce the wertical extent of the plot

axis([—-0 10 —10 10])

% and add a grid

grid on

% put the z—azis at y=0
%set(gca)

set (gca, *xaxislocation’, ’origin’)

% add labels on the z— and y—azes

xlabel (’omega)
ylabel(’error’)

% add a title
title ('Frequency Equation Error’)

% set the tick marks at multiples of pi
set (gca, 'xtick’ ,[0:pi:3xpi])

Frequency Equation Error

error
o

0 3.14159 6.28319 9.42478
omega

Trick: modify the equation

The conclusio from the graphs seems to be that if you want to find more fre-
quencies, it would be simplest to start fzero at odd values of 7/2. But that
does not work because the tan is infinite there.
But suppose we multiply the original equation

—kw = tan(w)

by cos(w):

—kw cos(w) = sin(w)

Then there is no longer a singularity at any omega. The error becomes:

Error(w) = sin(w) + kw cos(w)

So we define a new function:

function error = freqEqlErrorMod (omega)

% This function returns the error in the equation
% satisfied by the frequencies of a string with one end
% flexibly attached. The scaled attachment flexibility k
% is assumed to be 1.
%
% Input:
omega: the frequency to test
Output:
error: zero if omega is a correct frequency (tone)
of the string, nonzero if it is not.

v Advanced analysis taught in Analysis in Mechanical
% Engineering II shows that the equation the frequencies
v must satisfy is:

— k omega = tan(omega)
% However, the tan is infinite at any odd amount of pi/2,
% and that is a numerical problem. So we multiply both
sides by the cosine:
— k omega cos(omega) = sin (omega)

Then if the frequency is not right, the error in the
equation (difference between the right and left hand
sides) is:

error = sin(omega) + k omega cos(omega)

N NN RN RNEN RN NN KKK

% Note that omega is in radians.

% Do not forget the . before % and semi—colon.
error = sin(omega) + omega.x*cos(omega) ;
end

% let ’s plot it
errorVals=freqEqlErrorMod (omegaVals) ;
plot (omegaVals’,errorVals ")

% add a grid
grid on

% put the x—azis at y=0

10

set (gca, *xaxislocation’, ’origin’)

% add labels on the z— and y—azes
xlabel (’omega’)
ylabel(’error’)

% add a title
title (’Modified Frequency Equation Error’)

% set the tick marks at multiples of pi
set (gca, 'xtick ’ ,[0:pi:3xpi])

% let ’s try it out

disp(’)

omegallnterval=[0.5%xpi 1.5%pi]

omegal=fzero (’'freqEqlErrorMod’ ,omegallnterval)
% yes, that produced the correct root

% seems to work OK:

disp(’)

omega2lnterval=[1.5%xpi 2.5%pi]

omega2=fzero (’'freqEqlErrorMod’ ,omega2Interval)

% try the next one

disp(’)

omega3lnterval=[2.5xpi 3.5%pi]

omega3d=fzero ('freqEqlErrorMod’ ,omega3Interval)

% and the next

disp(’)

omegadInterval =[3.5xpi 4.5x%pi]

omegad=fzero ('freqEqlErrorMod’ ,omegadInterval)

disp ('We may approximate the rest as ((2n—1)/2)*pi’)

% at some point, the frequencies will get so close to the
% odd multiple of pi/2 that we can ignore the difference.

omegallnterval =
1.5708 4.7124
omegal = 2.0288

omega2lnterval =
4.7124 7.8540
omega2 = 4.9132

omegadlnterval =

11

7.8540 10.9956
omegad = 7.9787

omegadlnterval =
10.996 14.137
omegad = 11.086
We may approximate the rest as ((2n-—1)/2)x*pi

Modified Frequency Equation Error

~

error
o

L]

0 3.14159 6.28319 9.42478
omega

HOW ABOUT IF THE STIFFNESS IS NOT 177

So far we assumed that £ was 1 in

—kw cos(w) = sin(w)
What if it is not? Surely we cannot create a new function for every possible

value of k77

So we must create a function that accepts k as an input argument. Then we
can use that function for any k we want:

function error = freqEqError (omega, k)

% Function used to find the natural frequencies of a
% string that has one end rigidly attached to the musical

12

instrument but the other end attached to a flexible
strip .

Input:
omega: The natural frequency in radians.
k: The bending flexibility of the strip.

Both are suitably nondimensionalized in a way not
important here.

Output :
error: If error is zero, then the frequency is a
valid one for that wvalue of k. Note that a
string can vibrate with infinitely many
frequencies (theoretically at least)

Advanced analysis taught in Analysis in Mechanical
Engineering II shows that the equation the frequencies
must satisfy is:

— k omega = tan(omega)
However, the tan is infinite at any odd amount of pi/2,
and that is a numerical problem. So we multiply both
sides by the cosine:
— k omega cos(omega) = sin (omega)

Then if the frequency is not right, the error in the
equation (difference between the right and left hand
sides) is:

error = sin(omega) + k omega cos(omega)

NNV AW RN RRR QRN QRN NNRKNK

% Note that omega is in radians.

% Do nmot forget the . before * and the semi—colon.
error = sin(omega) + kxomega.* cos(omega) ;
end

But how do we tell fzero what k to use??

There is no way to tell fzero to use a second input argument in a function.
Instead we must tell Matlab itself to provide fzero a new function that has the
desired value of k already in it.

The convenient way to do that is to tell matlab to create an anonymous (name-
less) function (x) of x that for given x returns freqEqError(x,k), with k the
value we want. That can be done as

@(omega) freqEqError (omega, k)

13

(The "@" is not a function name. It tells matlab to create a "handle" to that
function for fzero to get hold of it.)

% let ’s first try it for the current value k = 1

disp(’)
k=1
disp ([’Current k—value: ’, num2str(k)])

omegallnterval =[0.5%pi 1.5xpi]
omegal=fzero (Q(omega) freqEqError (omega,k),omegallnterval

omega2lnterval =[1.5%pi 2.5x%pi]
omega2=fzero (@(omega) freqEqError(omega,k), omega2lnterval

)
disp (’Seems to work OK.)

% how about another walue of k now?

disp(’)

% notify about the new k value
k=2;

disp (['New k—value: ’, num2str(k)])

% compute the new frequencies
omegallnterval =[0.5%pi 1.5xpi]
omegal=fzero (Q@(omega) freqEqError (omega,k),omegallnterval

omega2lnterval =[1.5%pi 2.5x%pi]

omega2=fzero (@(omega) freqEqError(omega,k), omega2Interval
)

omega3Interval =[2.5xpi 3.5xpi]

omegad=fzero (Q(omega) freqEqError (omega,k),omega3Interval
)

omegadlnterval =[3.5xpi 4.5%pi]

omegad=fzero (@Q(omega) freqEqError(omega,k), omegadlnterval

)

disp (’Seems to work OK.)

k= 1
Current k—value: 1
omegallnterval =

1.5708 4.7124
omegal = 2.0288
omega2lnterval =

4.7124 7.8540
omega2 = 4.9132

14

Seems to work OK.

New k—value: 2
omegallnterval =
1.5708 4.7124
omegal = 1.8366
omega2lnterval =
4.7124 7.8540
omega2 = 4.8158
omega3dlnterval =
7.8540 10.9956
omegad = 7.9171
omegadlnterval =
10.996 14.137
omegad = 11.041
Seems to work OK.

PRINT OUT THE FREQUENCIES NICELY

The fprintf function allows you to print out numbers in your own way. Use it
as

fprinf ('FORMAT_STRING’ ,VALUES)

Function fprintf uses the following symbols in FORMAT _STRING:
o %i: integer (also %d)
e %f: floating point number
e %e: floating point number in exponential notation
e %g: best choice of %f or %e
More advanced formatting:
e %PRINTPOSITIONSI
e %PRINTPOSITIONS.DIGITSBEHINDPOINTf

Warning :
You need a \n at the end to go to the next line.

% the first %f gets replaced by k
% the %i gets replaced by the frequency number
% the second %f gets replaced by omega

disp (")

15

fprintf(’for k =%f, omega%i equals: %f\n’ k,1,omegal)
fprintf(’for k =%f, omega%i equals: %f\n’,k,2,omega2)
fprintf(’for k =%f, omega%i equals: %f\n’,k,3,omega3)
fprintf(’for k =%f, omega%i equals: %f\n’ k,4, 6 omegad)

disp (’From now on, all FINAL numbers MUST use fprintf!’)
disp ('ILLEGAL to put ANY printed numbers in the STRING!’)

% take control of the formatting

disp(’)

disp(’You MUST take control of the formatting!’)

fprintf(’for k =%5.2f, omega%li equals:%6.3f\n’ k,1,
omegal)

fprintf(’ for k =%5.2f, omega%li equals:%6.3f\n’ k,2,
omega?2)

fprintf(’for k =%5.2f, omega%li equals:%6.3f\n’ k,3,
omegad)

fprintf(’for k =%5.2f, omega%li equals:%6.3f\n’ k4,
omegad)

disp ('Note that %f performs rounding!’)

for k =2.000000, omegal equals: 1.836597
for k =2.000000, omega2 equals: 4.815842
for k =2.000000, omega3d equals: 7.917053
for k =2.000000, omegad equals: 11.040830

From now on, all FINAL numbers MUST use fprintf!
ILLEGAL to put ANY printed numbers in the STRING!

You MUST take control of the formatting!
for k = 2.00, omegal equals: 1.837

for k = 2.00, omega2 equals: 4.816

for k = 2.00, omega3d equals: 7.917

for k = 2.00, omegad equals:11.041

Note that %f performs rounding!

GETTING THE K VALUE DIRECTLY FROM THE KEY-
BOARD

To create a script findFrequencies.m that allows any Matlab user to compute
any frequency for any stiffness, do it as follows:

%% String frequencies script

%

% This script will compute the natural frequencies of a
% string that has one end rigidly attached to the musical

16

% instrument but the other end attached to a flexzible
% strip. It gets the strip stiffness and frequency
% number directly from the user.

% keep doing this until the user enters 0 for k
while (1==1)

% get the stiffness
k=input (’Enter the stiffness k (0 to quit): ’);

% quit if mot positive
if (k<= 0)

break
end

% keep finding frequencies until the user enters 0
while (1==1)

% get the root number
n=input (’Desired root number (0 to change k): ’);

% quit the inner loop if mnot positive
if (n <= 0)

break
end

% find the frequency

omegalnterval =[(2xn—1)/2xpi (2xn+1)/2xpi];

omega=fzero (Q(omega) freqEqError (omega,k) ,...
omegalnterval) ;

% print it out mnicely

fprintf (...
"for k =%6.3f, frequency%2i equals: %f\n’ ,...
k,n,omega)

end

end

This uses the input function to get the desired values from the user. Note that
using the input function prevents publishing in at least Octave.

17

ADDITIONAL REMARKS

To find the smallest or largest value of a function instead of a zero value, you
could find a zero for the derivative. Alternatively, you can directly search for a
minimum by using Matlab function fminbnd instead of fzero. To search for a
maximum, search for a minimum of minus the function.

If you have more than one variable, things get messier. Try fzero or fminunc.

End lesson 2

18

	Initialization
	THE PROBLEM WE WANT TO SOLVE
	FUNCTIONS DESCRIBING ERRORS IN EQUATIONS
	Play a bit with the function
	PLOT TO UNDERSTAND THE PROBLEM BETTER
	Plot the error for 0 < omega < 10
	Try improving the plot
	Try, try, again
	FINDING ACCURATE VALUES FOR THE FREQUENCIES
	Finding the value of the lowest frequency
	Find many more frequencies
	Trick: modify the equation
	HOW ABOUT IF THE STIFFNESS IS NOT 1??
	But how do we tell fzero what k to use??
	PRINT OUT THE FREQUENCIES NICELY
	GETTING THE K VALUE DIRECTLY FROM THE KEYBOARD
	ADDITIONAL REMARKS
	End lesson 2

