1 INTRODUCTION

Contents

Initialization|

|Basic computations|

|[Exponential notation|

Comments
Basic finctions
[Variables|

|Computing with variables|

|Creating your own functions|

HOW TO DO HOMEWORKS

MORE ON BASIC COMPUTATIONS]
Bad numbers]

Accurac

IManipulating variables|

IPi to a trillion digits is not enough?|

MORE ON FUNCTIONS|

ARRAYS

ISome examples|

[Atrickl

|[Fixing our sqr function|

10

11

11

12

12

Initialization

13

Things to do before an interactive section. (Emacs users also set C-x f fill

column to 57.)

% reduce needless whitespace
format compact

% reduce irritations

more off

% start a diary

%diary lecturel . txt

Basic computations

243

2-3

2%3

2/3

273

1.5/.5
disp(’1.5/.57)
1.5/.5

ans =
ans
ans
ans
ans
ans
1.5/.5

ans = 3

.66667

Il
W oD Ut

Exponential notation

% exponential notation for Planck’s constant
1.0546e—34

% or not
0.00000000000000000000000000000000010546

% square of Planck’s constant
1.0546e—3472

ans = 1.0546e—34
ans = 1.0546e—34
ans = 1.1122e—68
Comments

How to document your code.

% Lines starting with a single % are explanatory comments
% that Matlab ignores.
disp (’Comments start with %)

% Lines starting with %% are also ignored, and act as
% section headers in the "published" output.
disp(’Section headers start with %%’)

Comments start with %
Section headers start with %%

Basic functions

% getting the square Toot of a number
sqrt (9)

% matlab (and all science) uses radians by default
sin (30)
sin (pi/180%30)

% avoid wusing degrees if not needed

sind (30)
ans = 3
ans = —0.98803

ans = 0.50000
ans = 0.50000

Variables

Variables are named storage locations.

Note:

In a
VARIABLENAME=VALUE

command, VALUE is evaluated xfirst x.
Then that VALUE is stored in the variable
with name VARIABLENAME. If no variable
with that name exists as yet, it is
created .

Note:
VARIABLENAME=VALUE

is *xxnot*xxx an equality

It is an assignment statement. It stores VALUE in VARIABLENAME. To test
whether the number in VARIABLENAME is the same as VALUE, use instead
VARIABLENAME==VALUE.

% there is no wvariable named ’z’ yet (no response)

who x
% see also the workspace window

% The next statement (command) is xnotx a question. It
% tells matlab to create a variable named ’z’, if it does
% not yet exist, (like mow), and then put the value 3 in

% that storage location.

% create x and store 8 in it
x=3

% now we have a variable =z

who x

whos x

% see also the workspace window

% we can print out its wvalue by invoking its mname
X

% with a final ;, the wvalue is *mnotx printed
X3

x=3;

x = 3

Variables in the current scope:

X

Variables in the current scope:

Attr Name Size Bytes
Class

b 1x1 8
double
Total is 1 element using 8 bytes
x = 3

Computing with variables

% we can compute with =
Xx=x+7

% In the above statement, the right hand side is

% evaluated * firstx. Then the result, 10, is put in the
% storage location named "z'. The old wvalue, 3, is

% xlostx.

% we can double =z
X=X+X
% try wusing the Up—Arrow key a few times

x = 10
x = 20

Creating your own functions

Matlab provides a function sqrt(x) that 'returns’ the square root of x. But
suppose you would like a function sqr(x) that returns the square instead of
square root of x.

The general way to do it is to write a function file. For our sqr function, the
function file must be called sqr.m. A minimal example of the contents of that
file is shown below:

Contents of sqr.m:

function x2 = sqr(x)
X2 = X*X;
end

% Let’s test out our mew function!
sqr (2)

sqr (3)

x=4

sqr(x)

y=sqr (x) ;

y

% seems to work OK

ans = 4
ans = 9
x = 4
ans = 16
y = 16

HOW TO DO HOMEWORKS

Demonstrated for hwoO:

1. Open program "Secure Shell Client"

2. Select "Quick Connect"

Enter 'wolf’ for Host (without the quotes)

Enter your COE username and then your password.
Enter Jdommelen/gethwN’ where N is the hw number.
On success, enter ’exit’ and close the Client.

Select the created hwN folder in Matlab.

Put the solution of question 1 into ql.m.

© ® N e ovos W

Try executing ’'clear’ and ’ql’ in the command window.
10. If OK , enter 'publish q1.m pdf’

11. Print out the created ql.pdf in the html folder.

12. Same for the other questions.

13. Staple all printouts together.

14. Hand in at the start of class.

MORE ON BASIC COMPUTATIONS

Here are some additional points about simple computations.

Bad numbers

% Inf(inity)
1/0

% N(ot)aN(umber)
0/0

% "underflow" can be dangerous
1.0546e—-34"10

% "overflow" is at least as bad
(1/1.0546e—34)"10

warning: division by zero

ans = Inf

warning: division by zero
ans = NaN

ans = 0

ans = Inf

Accuracy

Normally Matlab numbers have a "relative" error of about 10716, That means
that there are about 16 correct digits, starting from the first nonzero digit.

% try something
(1/3)+(1/3)+(1/3)-1

% oops, not intended to be that accurate, try again
(1/3)+(1/3)+(1/3)+(1/3) +(1/3) +(1/3)—2

% try it with bigger numbers

(1000/3) +(1000/3) +(1000/3) +(1000/3) +(1000/3) +(1000/3)
—2000

% print out the "absolute’

eps(1)

% print out the "absolute

eps(1000)

error in 1

"

error in 1000

% watch very large walues of the argument of trig
functions

sinl=sin (10xpi)

$in2=sin (10000000000000000x* pi)

cosl=cos (10 pi)

error=cosl —1

c0s82=c0s (100000000000000000* pi)
error=cos2—1

ans = 0

ans = —2.2204e—-16
ans = —2.2737e—-13
ans = 2.2204e—-16
ans = 1.1369e—13
sinl = —1.2246e—-15
sin2 = —0.37521
cosl = 1

error = 0

cos2 = —0.53004
error = —1.5300
Precedence

If no parentheses are used, the following order of precedence applies to basic
computations:

highest: ~

lower: *, /

lowest +, -

% without parentheses

24-3x4

% since * takes precedence over +, this is the same as
24 (3%4)

% and not the same as

(2+3) x4

% without parentheses

12/2%3

% since / and x have equal precedence, this is
(12/2)%3

% and not

12/(2+3)

ans = 14
ans 14
ans 20
ans 18
ans 18
ans

I
NS

Manipulating variables

% always keep track of xwhatx is stored in a variable
x=1
y=2

% let ’s try to swap the wvalues naively
y=X; X=Y;

% Note in the above that the trailing semi—colons prevent
% the new values of z and y to be printed. We were

% keeping them secret. But now look at the results;

% we did not correctly swap the wvalues; the 2 got lost.

% lets try again
x=1

y=2

% This time we prevent the wvalue of y from becoming lost
% by storing it in a temporary wvariable called ’temp’

% save the original value of y

ySaved=y

% now give y the value of z

y=X

% and give x the xsavedx wvalue of y
x=ySaved

Pi to a trillion digits is not enough?

% show pi (also note workspace)
pi

% the Indiana pi bill would redefine pi as 3.2

pi=3.2
% see workspace
pi

% maybe not a good idea?
clear pi

% we have the old value back
pi

ans = 3.1416
pi = 3.2000
pi = 3.2000
ans = 3.1416

MORE ON FUNCTIONS

Many students are confused by functions. Let’s see whether we can figure out
exactly what Matlab does when a simple function like sqr is used.
Contents of sqr.m:

function x2 = sqr(x)
X2 = X*X;
end

Contents of trysqr.m:

disp(’Start of trysqr.m’)
sqr(3)
y=4

sqr (y)

To run:

1. Observe the workspace.

Set a break point before the first use of sqr.
Invoke trysqr.m.

Observe the workspace.

Use Step-into.

Observe the workspace. (Matlab uses Pass-by-Value)

NS s w

Use Step

10

8. Observe the workspace.

9. Etcetera.

ARRAYS

Arrays are tables of numbers. They are usually created using square brackets.

Some examples

% create a row of numbers

list=[1 2 4 9 16]

% matlab functions can handle entire lists!
sqrt(list)

% another example
list=[0 30 45 60 90]
sind (list)

cosd (list)

tand (list)

% there are two ways to create columns of numbers
list =[1; 2; 4; 9; 16]
sqrt(list)

% the other way is to put a quote on a Tow

list=[1 2 4 9 16]°

% another quote turns it back into a row
list ’

list =

1 2 4 9 16
ans =

1.0000 1.4142 2.0000 3.0000 4.0000
list =

0 30 45 60 90
ans =

0.00000 0.50000 0.70711 0.86603 1.00000
ans =

1.00000 0.86603 0.70711 0.50000 0.00000
ans =

0.00000 0.57735 1.00000 1.73205 Inf
list =

11

| © © &~ o

ans
1.0000
1.4142
2.0000
3.0000
4.0000

list =

A trick

You can create some types of arrays more easily using [START:END] notation.
More generally, you can use [START:STEP:END] notation.

% the straightforward way
list=[1 23456789 10]

% the quickest way
list =[1:10]

% the more general way
list =[1:1:10]

% try another
list =[—4:2:12]

list =

1 2 3 4 5 6 7 8 9 10
list =

list =
list =

—4 -2 0 2 4 6 8 10 12

12

Fixing our sqr function

WARNING:

Matlab has a nasty habit of starting to take

dot products when multiplying arrays of functions.
To avoid trouble, precede x, /, and = with a point.

Contents of sqrFixed.m and sqrDot.m:

function x2 = sqrFixed (x)
X2 = X.*X;

end

function x2 = sqrDot(x)
X2 = x'xx;

end

list =[1:10]

goodSqrt=sqrt(list)

% badSqr=sqr(list)
goodSqr=sqrFixed (list)
goodDot=sqrDot (list ’)

list =
1 2 3 4) 6 7
goodSqrt =
Columns 1 through 8:
1.0000 1.4142 1.7321 2.0000
2.6458 2.8284
Columns 9 and 10:
3.0000 3.1623
goodSqr =
1 4 9 16 25 36
100
goodDot = 385

End lesson 1

13

2.2361

49

64

10

2.4495

81

	Initialization
	Basic computations
	Exponential notation
	Comments
	Basic functions
	Variables
	Computing with variables
	Creating your own functions
	HOW TO DO HOMEWORKS
	MORE ON BASIC COMPUTATIONS
	Bad numbers
	Accuracy
	Precedence
	Manipulating variables
	Pi to a trillion digits is not enough?
	MORE ON FUNCTIONS
	ARRAYS
	Some examples
	A trick
	Fixing our sqr function
	End lesson 1

