6 FOR, IF, WHILE

Contents

%

FOR LOOPS

|A very simple loop|

|A slightly more elaborate version

'This is great!

|[Forming matrices|

ITry a bigger matrix like that)|

[Summing a Taylor series|

|A better way to do the Taylor series|

IF CONSTRUCTS]

|A couple of very simple examples|

|A more sophisticated example|

|IRelational operators|

|Logical operators|

is 1s great!

|Use it also in summing|

Oops]

[Taylor series done more efficiently|

WHILE LOOPS

|A simple example|

10

11

12

13

14

15

15

[Doing the sum with a while loop|

[End Tesson 6l

Initialization

16

16

% reduce meedless whitespace
format compact

% reduce irritations

more off

% start a diary

%diary lectureN. txt

% xxxUSE testN.m SCRIPTS !+ xx

FOR LOOPS

For loops are useful if you want to do the same sort of things multiple or many

times

A very simple loop

disp(’Let’’s try it!’)
for counter=1:3
disp ('Matlab is great!’)
end
disp ('Done. 7)

disp (’Note how the "execution pointer" has moved!)

Let’s try it!
Matlab is great!
Matlab is great!
Matlab is great!
Done.

Note how the "execution pointer"

has moved!

A slightly more elaborate version

n=>5
fprintf(’Remember these %i facts about Matlab:\n’ n)
for counter=1:n
fprintf('%i: Matlab is great!\n’,counter)
end
disp ('Done)

)

(
disp ('Note how Matlab processed those lines. At the’)
disp(’"for" command it did *not* set '"counter" equal’)
disp(’to the vector [1 2 3 4 5]. Instead it set’)
disp (’counter equal to the first number, 1. Then’)
disp ('Matlab went on to the fprint statement. But when’)
disp(’it saw the "end' command, it jumped back to the’)
disp(’"for" command, and set counter equal to the’)
disp (’second number, 2. And it repeated these steps’)
disp(’for 3, 4, and 5. But when it jumped back to the’)
disp(’"for" command after the 5, there were no more’)
disp ('numbers. So Matlab then jumped past the "end"’)
disp ('statement and went on with the "disp"' command’)

(

disp (’and beyond.)

n= 9

Remember these 5 facts about Matlab:

Matlab is great!

Matlab is great!

Matlab is great!

Matlab is great!

5: Matlab is great!

Done

Note how Matlab processed those lines. At the
"for" command it did *notx set "counter"' equal

=W N

to the vector [1 2 3 4 5]. Instead it set
counter equal to the first number, 1. Then
Matlab went on to the fprint statement. But when

it saw the "end" command, it jumped back to the
"for" command, and set counter equal to the
second number, 2. And it repeated these steps
for 3, 4, and 5. But when it jumped back to the
"for" command after the 5, there were no more
numbers. So Matlab then jumped past the "end'
statement and went on with the "disp" command
and beyond.

This is great!

Remember how messy it was in lesson2 to find and neatly print four frequencies
for the flexibly suspended string? Now we can easily find and print 10! Or much
more still.

% define function freqEq, the condensed wversion
freqEq=Q(omega,k) sin(omega) + kxomegaxcos(omega) ;
% set the flexibility

k=1
% print out the first 10 frequencies
for n=1:10

guess=(n—0.5)*pi;

omega=fzero (Q(omega) freqEq(omega, k), guess);

fprintf (...
"Frequency %2i: guess: %6.3f; exact: %6.3f\n’ ,...
n, guess ,omega)

Frequency
Frequency 1

guess: 26.704; exact: 26.741
guess: 29.845; exact: 29.879

end
k=1
Frequency 1: guess: 1.571; exact: 2.029
Frequency 2: guess: 4.712; exact: 4.913
Frequency 3: guess: 7.854; exact: 7.979
Frequency 4: guess: 10.996; exact: 11.086
Frequency 5: guess: 14.137; exact: 14.207
Frequency 6: guess: 17.279; exact: 17.336
Frequency 7: guess: 20.420; exact: 20.469
Frequency 8: guess: 23.562; exact: 23.604
9
0

Forming matrices

Remember the following matrix from lesson 57

A=1]1 2 3;

1
4 5 6;
7 8 9]

With a for loop, we can create it in a more systematic way that allows bigger
matrices like that to be formed.

% size of the matriz

n=3

% create storage for the matric
A=zeros(n);

% loop over the rows

for i=1:n
% loop over the columns
for j=I1:n
% give the right value
A(T,§)=j+(i—1)#n;
end
end
% print it out
A
% check that it is still singular
condA=cond (A)

n= 3
A =
1 2 3
4 5 6
7 8 9
condA = 6.0262e+16
Note

Without the A=zeros(n) line above, and no existing matrix A, Matlab would
on the first time in the loop reach the line A(1,1)=1. Since it has no matrix
A, Matlab would then create storage for a matrix A of size 1 by 1. Then after
reaching the end of the for j loop, it would return to for j, set j to its second
value 2, which makes the next line it sees A(1,2)=2. Since this cannot be stored
in the 1 by 1 matrix it has created, Matlab would then create storage for a
bigger 1 by 2 matrix A and give it the two values 1 and 2, deleting the old 1
by 1 matrix A. And so on. After j has reached it final value n, Matlab would
reach the second end, the one that ends the for i loop. It would then return
to the for i and give i its second value 2. Next it gives j again its starting
value 1, and then it would see the line A(2,1)=n+1. Since that would not fit
inside the 1 by n matrix it has, it would delete that matrix after creating a new
2 by n matrix. All this creating and deleting matrices is very inefficient. It is
much better to force Matlab to make matrix A the correct size immediately.
Also, without creating a new matrix A using A=zeros(n) the matrix would not
shrink if we made n smaller. Matlab will make matrices bigger if it needs more
storage locations, but it will not make matrices smaller by itself.

Try a bigger matrix like that

n=>»s
A=zeros(n);
for i=1:n
% loop over the columns

for j=I1:n
% give the right wvalue
A, §)=j+(i —1)sn;
end
end
A
condA=cond (A)
disp(’Yes, this bigger matrix is singular too.’)

1 2 3 4)
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25
condA = 8.3563e+17
Yes, this bigger matrix is singular too.

Doing sums
Let’s say that we want to evaluate the sum

1 1 1

g + 52 + 3*2 +...+ m
A for loop from 1 to 1000 will do it quite nicely. Note that term number i in
the sum equals 1/i72.

% initialize the total of the terms summed so far to zero
total=0;
% in a for loop from 1 to 1000, add each term in turn
for i=1:1000
total=total+1/i"2;
end
% print out the obtained sum
sum=total
disp(’(It should be less than 1.6449)’)

sum = 1.6439
(It should be less than 1.6449)

Summing a Taylor series

Not all mathematical functions are provided by Matlab, or any numerical soft-
ware, in canned form. When you encounter such a function, one option to

evaluate it is to sum its Taylor series. (That assumes that you know the Taylor
series, but usually you do. For example, the function might be the integral of a
function whose Taylor series you can easily find.)

As an example let’s evaluate e! by summing its Taylor series. (We will ignore
the fact that you could get the value much more simply as exp(1).)

The Taylor series of e* is according to calculus:

xt 2?23

z —_— JE— JE— PR
et =1+ 1 + o1 + 3l + ...
So term number i in the sum is x~i/factorial(i). And there is in addition a
starting "term 0" that is 1.

% the z wvalue at which we want the Taylor series
x=1
% initialize the total of the terms so far to term 0
total=1;
% loop to add 100 more terms to total
for i=1:100
% add term number i to the total
total=total4+x"i/factorial (i);
end
% print out the obtained value
expValue=total
% see how big the error really is
expError=exp(x)—total

x = 1
expValue = 2.7183
expError = —4.4409e—-16

A better way to do the Taylor series

The previous way of doing the Taylor series of e* is not ideal. For one, to
evaluate x"1i requires (in the simplest case) that Matlab does i-1 multiplications
T * 2% 2 *...x 2. Similarly, finding factorial (i) requires i-1 multiplications.
That is a lot of multiplications for Matlab to do when i becomes larger. Not to
mention that factorial(i) "overflows" (becomes too big to store) for i greater
than 170. Similarly, if x was 10 instead of 1, x"i would overflow at i equal
to 307. The summing would crash. That is why above we took the maximum
value of i equal to 100 instead of, say, 1000.

Look once more at that Taylor series:

N A
I TR DY B

Note that in every case term i equals the previous term times x/i. Evaluating
term i that way requires just one multiplication and one division. That is a lot

better than 2 times i-1 multiplications and a division. And it will no longer
produce infinite values. To do the sum this way does require that we store the
successive terms in a variable, which we will call term.

% the z walue at which we want the Taylor series
x=1
% initialize term 0
term=1;
% initialize the total of the terms so far to term 0
total=term;
% the number of terms we can do can mow be much bigger
imax=10000;
% in a for loop from 1 to imax, add imazx more terms
for i=1:imax
% compute the new term to add from the previous one
term=terms*x/1i;
% add it to the total
total=total+term;
end
% print out the obtained value
expValue=total
% see how big the error really is
expError=exp(x)—total

x = 1
expValue = 2.7183
expError = —4.4409e—16

IF CONSTRUCTS

An if construct is useful if you only want to do some things under specific
conditions.

A couple of very simple examples

disp(’Let’’s try it!’)

if 1> 2

disp(’Hey, one is greater than two!’)
end
if 2>1

disp('Hey, two is greater than one!’)
end

disp ('Done. 7)

Let’s try it!
Hey, two is greater than one!
Done.

A more sophisticated example

You can do the above much nicer with an

if CONDITION1
DOSOMETHING1
elseif CONDITION2
DOSOMETHING2
else
DOSOMETHING3
end

Note: You can have more than one elseif in a row, or none at all. But you
cannot have a space between else and if.

% try it
disp(’Let’’s try it!”)
if 1 > 2

disp(’Hey, one is greater than two!’)
elseif 2 > 1

disp('Hey, two is greater than omne!’)
else

disp(’Hey, one and two are equall!’)
end
disp (’Done. ")

Let’s try it!
Hey, two is greater than one!
Done.

Relational operators

The standard "relational operators" are

Symbol Meaning

> greater

< less

>= greater or equal
<= less or equal
= equal

~= not equal

% Let’s try it
disp(’Let’’s try it!”)
% let ’s compute two mnumbers that are roughly the same
halfpi=pi/2;
rt2=sqrt(2);
if halfpi > rt2

disp('Hey, pi/2 is greater than sqrt(2)!’)
elseif halfpi < rt2

disp(’Hey, pi/2 is less than sqrt(2)!7)
elseif halfpi=rt2

disp(’'Hey, pi/2 is equal to sqrt(2)!’)
else

disp ('Matlab has gone crazy!’)
end
disp (’Done. ")

Let’s try it!
Hey, pi/2 is greater than sqrt(2)!
Done.

Logical operators

The standard "logical operators" are:

Symbol Meaning
~ logical NOT
& logical AND
| logical OR

There is also XOR, but you rarely need it if you do normal engineering things.
The above operators are in order of precedence. Use parentheses as needed to
be safe and for readability.

% let ’s try it

disp(’Let’’s try it!’)

% we *needx the parentheses below???

if halfpi>1 & halfpi<2 & ~ (halfpi==1.5)
disp(’pi/2 is between 1 and 2 and not 1.5!’)

end

% the next might be more readable?

if (halfpi>1) & (halfpi<2) & ~ (halfpi==1.5)
disp(’'pi/2 is between 1 and 2 and not 1.5!)

end

% definitely the below is more readable
if (halfpi>1) & (halfpi<2) & (halfpi~=1.5)

10

disp(’pi/2 is between 1 and 2 and not 1.5!’)
end

Let’s try it!

pi/2 is between 1 and 2 and not 1.5!
pi/2 is between 1 and 2 and not 1.5!
pi/2 is between 1 and 2 and not 1.5!

This is great!

Remember how we had to check the solution of the linear system of equations
in lesson5? Now we can do this in a much clearer and better way. In particular,
we can avoid wasting time and paper computing a useless solution.

% recreate the system
disp(’Let’’s redo the solution of the linear equations:’)
A=11 2 3;
05 6;
78 9];
b = [3;
2;
9];
condA=cond (A) ;
relErrorMatlab=condAxeps (1)
if relErrorMatlab >= 0.1
disp (’There is no reasonable solution to this system!

)
else
x=A\bD
if relErrorMatlab > 0.001
disp (’Warning: the above solution may have
significant error!’)
end
end
disp(’Let’’s redo the singular equations too:’)
A(2,1)=4;
condA=cond (A) ;
relErrorMatlab=condAxeps (1)
if relErrorMatlab >= 0.1
disp(’There is no reasonable solution to this system!

)
else
x = A\ b;
X’

if relErrorMatlab > 0.001

11

disp (’Warning: the above solution may have
significant error!’)
end
end

Let’s redo the solution of the linear equations:

relErrorMatlab = 8.4241e—-15
x =
1
-2
2

Let’s redo the singular equations too:
relErrorMatlab = 13.381
There is no reasonable solution to this system!

Use it also in summing
Earlier in this lesson, we did the sum

1 1 1

Tty
to one thousand terms. This time, however, we would like to check that if
we sum infinitely many terms, we really get 72/6. But of course, that is not
possible. It would take infinitely much time for Matlab to sum infinitely many
terms. And then there is round-off errors.
Realistically, the best that we can do is check that if we sum enough terms we
can get 72/6 to a "tolerated" error of say 0.0001 maximum. We can do that
if we put an if statement in the for loop that terminates the loop when the
estimated error in doing so is smaller than the tolerance 0.0001. To terminate
a loop, use the break command.
For now, let’s assume that we can stop when the next term to add is less than
the tolerance. In other words, let us estimate the error in terminating the sum
as being the first neglected term.

+ ...

% the allowed tolerance in wvalue
tol=0.0001
% initialize the total of the terms summed so far to zero
total=0;
% the maximum number of terms we would ever want to do
imax=100000;
% in a for loop from 1 to imaxz, add each term in turn
for i=1:imax

% compute the mew term

term=1/1"2;

% stop the for loop if it seems small enough

if term < tol

12

fprintf(’Stopped summing after %i terms.\n’,i—1)
break
end
% otherwise add it to the total and keep going
total=total+1/i"2;
end
% print out the sum
sum=total
% print out the actual error
actualError=pi~2/6—sum
% check that we are about as close as expected
if abs(actualError) > 5x%tol
disp(’Oops! Nowhere close!”)
end

tol = 1.0000e—04

Stopped summing after 100 terms.
sum = 1.6350

actualError = 0.0099502

Oops! Nowhere close!

Oops!

Estimating the actual error as the first neglected term was a not a good approx-
imation. The reason is that we did not just ignore 1/101°2, but also 1/10272,
1/103°2, ... The combined sum is much bigger than just 1/101"2.

Note that if this was an "alternating" series, whose terms are alternately positive
and negative, we would not have this problem, and what we did would have
worked fine.

But in this case, the terms are all positive. We can make a crude correction for
the accumulation of terms if we estimate the error not just as the first neglected
term, but as the term number i times the first neglected term. Let’s try that:

% the allowed tolerance in value
tol=0.0001
% initialize the total of the terms summed so far to zero
total=0;
% the maximum number of terms we would ever want to do
imax=100000;
% in a for loop from 1 to imaz, add each term in turn
for i=1:imax

% compute the new term

term=1/1"2;

% stop the for loop if it really seems small enough

if termx*i < tol

fprintf(’Stopped summing after %i terms.\n’,i—1)

13

break
end
% otherwise add it to the total and keep going
total=total+1/i"2;
end
% print out the sum
sum=total
% print out the actual error
actualError=pi~2/6—sum
% check that we are about as close as expected
if abs(actualError) > 5xtol
disp(’Oops! Nowhere close!”)
end

tol = 1.0000e—-04

Stopped summing after 10000 terms.
sum = 1.6448

actualError = 9.9995e—-05

Taylor series done more efficiently

If we want to sum a Taylor series, we probably want the most accurate answer
we can possibly get. To do so notice that in a convergent Taylor series, the
terms become smaller and smaller. Eventually they "underflow" and become
zero. After that point, it is obviously useless to keep summing. However many
times you add zero, it is not going to change the value.

But even when the terms are not yet underflowing, they may be too small to
further change the value of the sum. That is because numbers on a computer
have round-off errors. As soon as the individual terms in the sum become smaller
than the round off error in the accumulated sum, they are already unable to
change the sum.

So the smart way to do Taylor series is to keep summing until the sum no longer
changes. Let’s try it:

% the z wvalue at which we want the Taylor series
x=1
% initialize term 0
term=1;
% initialize the total of the terms so far to term 0
total=term;
% the mazimum number of terms we would ever want to do
imax=100000;
% in a for loop from 1 to imax, add up to imax more terms
for i=1:imax
% compute the new term to add from the previous one
term=terms*x/1i;

14

% add it to the total

oldtotal=total;

total=total+term:;

% stop if there is nmo longer a change

if total = oldtotal
fprintf(’Done summing at term %i.\n’ i)
break

end

end

% print out the obtained wvalue
expValue=total

% see how big the error really is
expError=exp(x)—total

x = 1

Done summing at term 18.
expValue = 2.7183
expError = —4.4409e—16

WHILE LOOPS

The while command is similar to the for command in that it loops, but it stays
looping as long as some condition remains true. It can be appropriate in cases
where you have no clue when looping will stop.

A simple example

Let’s keep looping until the user admits that Matlab is great.

% get the user’s name
name=input (’Please enter your name: ’,’s’);

% define a menu header
header=[name ' admits that:’];

% loop wuntil we get the right answer
choice=0;
while choice~=4
choice=menu(header , ...
’Matlab is horrible.’ ...
’Matlab is too much work.’ ,...
"Matlab is OK.’ ...
"Matlab is great!’)
header="Wrong answer. Try again:
end

).
)

15

% run lesson6a.m
%lessonba

Doing the sum with a while loop

You can do with while loops whatever you can do with for loops. For example,
we can evaluate the Taylor series for exp(1) using a while loop as shown below.
It works just like the for loops.

% the z walue at which we want the Taylor series

x=1

% initialize term 0

term=1;

% initialize the total of the terms so far to term 0
total=term;

% the mazimum number of terms we would ever want to do
imax=100000;

% initialize a counter of how many terms we have added
i=0;

% in a while loop, add up to imax more terms

while total ~= oldtotal
% each time through, increase the i wvalue by one
i=i+1;

% compute the mnew term to add from the previous one
term=termx*x/1;
% add it to the total
oldtotal=total;
total=total+term;
% stop if it takes too many terms
if i >= imax
fprintf(’Must stop summing after %i terms.\n’,i)
break
end
end
% print out the obtained value
expValue=total
% see how big the error really is
expError=exp(x)—total

x = 1
expValue = 2.7183
expError = —4.4409e—16

16

End lesson 6

17

	Initialization
	FOR LOOPS
	A very simple loop
	A slightly more elaborate version
	This is great!
	Forming matrices
	Note
	Try a bigger matrix like that
	Doing sums
	Summing a Taylor series
	A better way to do the Taylor series
	IF CONSTRUCTS
	A couple of very simple examples
	A more sophisticated example
	Relational operators
	Logical operators
	This is great!
	Use it also in summing
	Oops!
	Taylor series done more efficiently
	WHILE LOOPS
	A simple example
	Doing the sum with a while loop
	End lesson 6

