5 LINEAR ALGEBRA

Contents

Initialization|

[SOLVING LINEAR SYSTEMS OF EQUATIONS|

IThe problem we want to solve|

|IPut the problem in vector matrix form|

ISolve the system the correct way|

[Probl : oo

MATRIX MANIPULATIONS]

ansposes

IMatrix multiplication|

IMore matrix multiplication|

[Parts of matrices|

ISpecial matrices|

|[Eigenvalues and eigenvectors|

|A simple example|

|About symmetric matrices|

Initialization

10

13

14

18

18

21

22

22

% reduce meedless whitespace
format compact

% reduce irritations

more off

% start a diary

%diary lectureN. txt

SOLVING LINEAR SYSTEMS OF EQUATIONS

In the next subsection, we will solve a system of 3 equations in 3 unknowns. That
is just a small example of much larger systems of maybe billions of equations in
billions of unknowns used to solve flow fields by modern engineers.

disp ('SOLVING LINEAR SYSTEMS OF EQUATIONS: ")

SOLVING LINEAR SYSTEMS OF EQUATIONS:

The problem we want to solve

As an example, we want to solve the system of equations

xl + 2 x2 + 3 x3 =3
5 x2 + 6 x3 = 2
7 x1 +8 x2 4+ 9 x3 =09

for the unknowns x1, x2, and x3.
Note that we have taken the terms involving unknowns to the left and terms
without unknowns to the right. We have also ordered the unknowns

Put the problem in vector matrix form

To find the solution, first put the coefficients of the unknowns in a "matrix" A.
Also put the right hand sides in a column vector b. Note that we use uppercase
for matrices and lowercase for vectors.

A=1[12 3; b = [3;
0 5 6; and 2;
78 9] 9]

Note that the unknowns must be ordered and you must enter a zero for missing
unknowns. Also note that inside a matrix, a semi-colon starts a new line. A
comma does not do anything special. The Newlines inside the brackets are for
readability; the next would also work:

A=[0 2 3; 23 4; 56 T]
b=[3;2;9]

but would lose credit because it is a mess.

% create the matrix
disp(’Create the system matrix A:’)
A= 12 3;

05 6:

7 8 9]

% Put the right hand sides in a column vector b:
disp(’Create the right hand side vector b’)
b = [3;

2;

9]

Create the system matrix A:

A =

1 2 3

0 5 6

7 8 9
Create the right hand side vector b
b =

3

2

9

Solve the system the correct way

The system can now compactly be written as

Ax=5>

with A and b as above and x the column vector of the three unknowns. So, if
A and b were simple numbers, the solution would be x = b/A. But A and b are
not simple numbers.

The wrong way to solve would now be to first check that the determinant of A
is nonzero and then find the solution vector x as the inverse of A times b:

% Wrong, zero credit:

det (A)

disp(’det A is nonzero, so OK.’)
x = inv(A)x*b

Determinants work in ezact mathematics, but not in numerical methods, where
there are numerical errors, overflow, and underflow. And computing an inverse
matrix is very to extremely inefficient, and tends to increase round-off errors.
The correct way is to check that the condition number of A is not too large. If
it is not then solve the system using "left division"

% OK, credit

condA=cond (A)

disp(’'The condition number is not too large, so OK.’)
x=A\bD (left division: A\b instead of b/A)

The meaning of the condition number is as follows:

The condition number determines by what factor
the matrix magnifies relative errors.

So if the condition number is large, even very small errors in the coefficients of
matrix A and vector b can produce large errors in the solution vector x.

% the bad way
disp(’Solve the system the zero—credit way:’)
baddetA=det (A)
badx=inv (A) xb

% the good way: check the condition number
disp(’Solve the system the good way:’)
disp (’Check whether the condition number is OK:’)

condA=cond (A)
disp(’The condition number is not too large, so OK.’)

disp('Now solve the correct way: use "Left division",’)
disp(’i.e. not b/A but A\b:’)

x=A\bD

disp (’This is the correct solution to the system of’)
disp(’equations as given. But note that if the values’)
disp(’of A and b have measurement errors of just 0.1%,7)
disp('then the computed x values may have relative’)
disp(’errors as high as 4%:’)

relErrMeasurement=0.001
xRelErrDueToMeasurement=relErrMeasurementxcondA
disp ('Without checking the condition number, we would’)
disp(’have no clue of that!’)

Solve the system the zero—credit way:
baddetA = —24
badx =

1.0000

—2.0000

2.0000
Solve the system the good way:
Check whether the condition number is OK:
condA = 37.939
The condition number is not too large, so OK.
Now solve the correct way: use "Left division',
i.e. not b/A but A\b:

X
1
-2
2
This is the correct solution to the system of
equations as given. But note that if the wvalues

of A and b have measurement errors of just 0.1%,
then the computed x values may have relative
errors as high as 4%:

relErrMeasurement = 0.0010000
xRelErrDueToMeasurement = 0.037939

Without checking the condition number, we would
have no clue of that!

Problematic matrices

Consider now the modified system of equations

xl + 2 x2 4+ 3 x3 =23
4 x1 +5 x2 4+ 6 x3 = 2
7 x1 +8 x24+9 x3 =09

The only change is the additional 4 x1 in the second equation. But the matrix
is now singular, i.e. it has a zero determinant. In that case there is normally no
solution at all. (If there is a solution, there are infinitely many other ones that
are just as good).

To form the new matrix, we want to take the old matrix and just change the zero
in row 2, column 1 into a 4. We can do that with "indices". Always remember:

For matrices, the proper order is row—column

In particular, the element in row 2 and column 1 of A is A(2,1). The numbers 2
and 1 are called the "indices" of the element. Note that the row number 2 goes
before the column number 1.

% Change the element of A in row 2 and column 1 into a 4.
disp(’Let’’s make A singular now:’)
A(2,1)=4

% check the condition number

condA=cond (A)

disp('The condition number is excessive.’)

disp('Even with its 107—16 relative error, Matlab can’)
disp(’not find the solution to an acceptable error:’)
xRelErrorDueToMatlab=condAxeps (1)

disp(’The 107—16 relative error in A and b will produce’)
disp(’a relative error in x of about 1,300%!’)

% Try solving again

x=A\b

disp (’Nice numbers, but they are all wrong:’)
disp(’the correct solution is infinite!’)

Let’s make A singular now:

A =
1 2 3
4) 6
7 8 9
condA = 6.0262e+416

The condition number is excessive.

Even with its 107—16 relative error, Matlab can

not find the solution to an acceptable error:

xRelErrorDueToMatlab = 13.381

The 107—-16 relative error in A and b will produce

a relative error in x of about 1,300%!

warning: matrix singular to machine precision, rcond =
2.20304e—18

X =

0.50000

0.33333

0.16667

Nice numbers, but they are all wrong:

the correct solution is infinite!

MATRIX MANIPULATIONS

For advanced applications in linear algebra you must know how to do certain
tasks.

Transposes

The transpose of a matrix has rows and columns swapped:

Transposing swaps rows and columns

As we already saw

Transposing can be done with a single—quote

The conventional symbol for transpose is a superscript T.

disp (’Create "transposes' (indicated by T) using’’:’)

% try it for wector b
b

bT=b’

bTT=bT"’

% try it for matriz A
A

AT=A

ATT=ATY

Create "transposes' (indicated by T) using ’:

b =
3
2
9
bT =
3 2 9
bTT =
3
2
9
A =
1 2 3
4 5 6
7 8 9
AT =
1 4 7
2 3 8
3 6 9
ATT =
1 2 3
5 6
7 8 9

Matrix multiplication

We never checked whether A x is really b. Now multiplying matrix A and
column vector x together is an example of matrix multiplication, because a
three- dimensional column vector is also a matrix with 3 rows and 1 column.

The key thing to remember is:

Matrix multiplication is always row—column.

In particular, if we multiply matrices

A=11 2 3; x = [x1;
05 6; and X2
78 9] x3]

together, we get

[x1 + 2 x2 + 3 x3; b = [3;
5 x2 + 6 x3; which xshould* equal 2;
7 x1 + 8 x2 + 9 x3] 9]

after substituting the values of x. Note that the number 3 in row 1, column
1 of b is found as a dot product between row 1 of A and the single column 1
of vector x. Similarly the number 2 in row 2, column 1 of b is a dot product
between row 2 of A and the single column 1 of vector x, and similarly for the
number 9 in row 3, column 1 of b.

The row—column multiplications are dot products.

From the above, it follows

The rows and columns involved in matrix
multiplications must have the same number of
elements.

disp(’Let’’s try some matrix multiplications:’)

% restore the nomnsingular matriz and its z for now
disp (’First back to the nonsingular A and x:’)
A(2,1)=0

x=A\b

% do NOT put . before the * for matriz multiplication
disp (’Check what Axx is (do NOT use .x here):’)
valueAStarx=Axx

errorAStarx=Axx—b

disp(’All OK as expected.’)

% repeat for the singular case
disp(’let’’s try the singular matrix too:’)
A(2,1)=4

x=A\b

valueAStarx=Axx

errorAStarx=Axx—b

% reset A and x

disp (’Back to the nonsingular A and x:7)
A(2,1)=0

x=A\b

Let’s try some matrix multiplications:

First back to the nonsingular A and x:
A =

1 2 3
5 6
7 8 9
X =
1
-2
2

Check what Axx is (do NOT use .x here):
valueAStarx =

3

2

9
errorAStarx =

0

0

0
All OK as expected.
let ’s try the singular matrix too:
A =

1 2 3

4 5 6

7 8 9

warning: matrix singular to machine precision ,

2.20304e—18
X =
0.50000
0.33333
0.16667
valueAStarx =
1.6667
4.6667
7.6667
errorAStarx =
—1.3333
2.6667
—1.3333
Back to the nonsingular A and x:

rcond =

1 2 3
) 6
7 8 9
X =
1
-2
2

More matrix multiplication

% let ’s play a bit with matriz multiplication

disp ("How about some more multiplications?’)

A

B =[x x b x]

disp ('Each column in B is multiplied to A separately:’)

AStarB=AxB

disp('Note that AB is not BA; BA does not exist:’)

disp(’the four element rows of B cannot be dotted with’)

disp(’the three element columns of A.’)

dlsp(’And even if they could be multiplied , normally’)
(’AB is not the same as BA (exceptions exists).’)

9

% transpose

disp(’If b is a column vector:’)

b

disp('then the "transpose' of b is a row vector:’)

bT=b’

% dot product of b with itself

disp(’row vector bT % column vector b is a dot product:’)
bTStarb=b’*b

disp(’It equals the square length of either vector.’)

% "outer" product of b with itself

disp (’column vector b x row vector bT is a matrix:’)
b

bT=b’

bStarbT=bxb’

% b2 fails: row length 1 times column length 38 is bad
disp (’Unlike bT+b and b*bT, bxb cannot be multiplied.’)
disp(’And so, neither can b™2 be evaluated.’)

disp ('The same for bT.’)

"

% "elementwise" computation of =z

10

disp(’b .x b is multiplied elementwise:)
bPtStarb=b.xb

disp(’and so is b.72:7)

bPtSquareb=b."2

disp (’The same for bT:’)
bTPtStarbT=bT.*bT

bTPtSquarebT=bT."2

% some more multiplications

disp (’The same for bigger matrices:’)
A

AStarA=AxA

disp('For square matrices, 2 works:’)
ASquareA=A"2

APtStarA=A.xA

APtSquareA=A."2

How about some more multiplications?

A =
1 2 3
5 6
7 8 9

B =

1 1 3 1
-2 =2 -2
2 2 9 2

Each column in B is multiplied to A separately:
AStarB =

\V]

3 3 34 3
2 2 64 2
9 9 118 9

Note that AB is not BA; BA does not exist:
the four element rows of B cannot be dotted with
the three element columns of A.
And even if they could be multiplied , normally
AB is not the same as BA (exceptions exists).
If b is a column vector:
b =
3
2
9
then the "transpose' of b is a row vector:
bT =
3 2 9
row vector bT % column vector b is a dot product:
bTStarb = 94

11

It equals the square length of either vector.
column vector b *x row vector bT is a matrix:

3
2
9
bT =
3 2 9
bStarbT =
9 6 27
6 4 18

27 18 81
Unlike bTxb and bxbT, bxb cannot be multiplied.
And so, neither can b™2 be evaluated.
The same for bT.

b .x b is multiplied elementwise:
bPtStarb =

9

4

81
and so is b."2:
bPtSquareb =

9

4

81
The same for bT:
bTPtStarbT =

9 4 81
bTPtSquarebT =

9 4 81
The same for bigger matrices:

A =

1

0

7
AStarA

22 36 42

42 73 84

70 126 150
For square matrices, ~2 works:
ASquareA =

22 36 42

42 73 84

70 126 150
APtStarA =

1 4 9

3
6
9

|| oo ot o

12

0 25 36
49 64 81

APtSquareA =
1 4 9
0 25 36
49 64 81

Parts of matrices

Take parts out of matrices using START:END constructs.

disp (’Try taking parts out of matrices:’)

% make a bigger matriz to test

disp(’'First, let’’s make a bigger matrix:’)
Big=[A AT]

% the size of the matriz is again row—column
dims=size (Big)

% Taking part of a row out of a matriz (note row—column!)
row2part=Big (2,2:4)

% Taking an entire row out
row2all=Big(2,:)

% Bad, since less readable:
%row2=Big (2,1:end)

% Worse:

Jrow2=Big (2,1:6)

% Taking the columns out of a matriz (important)
cold=Big(:,4)

% Taking three columns out at the same time

col345=Big(:,3:5)

% deleting a column

disp(’'Let’’s delete column 2 in AT:’)
AT

AT(:,2) =[]

Try taking parts out of matrices:
First , let ’s make a bigger matrix:
Big =

1 2 3 1 4 7

0 5 6 2 5 8

7 8 9 3 6 9

13

dims =

3 6
row2part =

5 6 2
row2all =

0 5 6 2 5 8
cold =

1

2

3
col345 =

3 1 4

6 2 5

9 3 6
Let’s delete column 2 in AT:
AT =

1 4 7

2 5 8

3 6 9
AT =

1 7

2 8

3 9

Special matrices

Two important types of matrices are zero matrices and unit matrices.

A zero matrix is the matrix equivalent of the number zero. Adding or subtracting
a zero matrix A to something does not do anything. Multiplying by a zero matrix
produces zero. A zero matrix contains all zeros.

A unit matrix is the matrix equivalent of the number 1; multiplying by a unit
matric does not change anything. A unit matrix is square and contains zeros
except on the "main diagonal" that goes from top left corner to bottom right
corner.

A matrix is symmetric if it is the same as its transpose. Symmetric matrices
occur in many engineering applications.

disp(’Let’’s look at some special matrices:’)

% a zero matriz consists of all zeros

disp (’Adding a "zero matrix" makes no difference:’)
Z=zeros (3,6)

Z=zeros (size (Big))

Big

BigPlusZ=Big+Z

disp (’Multiplying by a zero matrix produces zero:’)

14

[m n]=size (Big)
Z=zeros (m)

Big
ZStarBig=Zx*Big
Z=zeros (n)

Big
BigStarZ=BigxZ
Z=zeros(n,1)
Big
BigStarZ=Big*Z

% a unit matriz has ones on the main diagonal
disp ('Multyplying by a unit matrix makes no difference:”)
I=eye(3)

Big

[StarBig=IxBig

I=eye (6)

Big

BigStarI=Bigx*I

I=eye(3)

X

[Starx=Ix*x

xT=x"’

xTStarl=xTx1

% look at a symmetric matriz
disp (’An example symmetric matrix:’)
S=1[3 4 5;

4 6 T;
5 7 8]
disp (’The transpose is the same:’)

ST=S"’

Let’s look at some special matrices:
Adding a "zero matrix" makes no difference:

7 =
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
7 =
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
Big =
1 2 3 1 4 7

15

BigPlusZ =

1

Multiplying by a zero matrix produces zero:

8 9

7
ZStarBig
0

0

0

Big =

BigStarZ =

0

SO O oo

Big =

16

BigStarZ =
0
0
0
Multyplying by a unit matrix makes no difference:
I =
Diagonal Matrix

1 0 0
0 1 0
0 0 1
Big =
1 2 3 1 4 7
0 5 6 5 8
7 8 9 3 6 9
IStarBig =
1 2 3 1 4 7
0 5 6 2 5 8
7 8 9 3 6 9

Diagonal Matrix

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
Big =
1 2 3 1 4 7
0 5 6 2 5 8
7 8 9 3 6 9
BigStarl =
1 2 3 1 4 7
0 5 6 2 5 8
7 8 9 3 6 9

Diagonal Matrix
1 0 0
0 1 0
0 0 1

-2
IStarx =

1
-2

17

2

xT =

1 =2 2
xTStarl =

1 -2 2
An example symmetric matrix:
S =

3 4 5

4 6 7

5 7 8
The transpose is the same:
ST =

3 4 5

4 6 7

5 7 8

Eigenvalues and eigenvectors

A vector e is an eigenvector of a square matrix A if

A e = lambda e

where lambda is a number called the eigenvalue.

Finding eigenvalues and eigenvectors is important for very many engineering
problems. For example, the principal moments of inertia of a rotating body
are eigenvalues. The corresponding eigenvectors are the unit vectors of the
"principal coordinate system". Also, the eigenvalues of "stiffness matrices" of
vibrating systems give the frequencies of vibration, and the eigenvectors give the
mode shapes. Eigenvalues and eigenvectors are also critical in beam bending,
in beam buckling, in the stresses and strains in materials under loads, and so
on.

Here we want to explore how, given a matrix A, you can find its eigenvalues and
eigenvectors.

% sece what is available to do so
%lookfor eigenvalue

A simple example

disp(’Let’’s find some eigenvalues and eigenvectors!’)

% example symmetric matrix
disp(’'The "strain rate' matrix S in Couette flow:’)
C=1

18

lambda=eig (S)

disp (’Separate out the eigenvalues:’)
lambdal=lambda (1)
lambda2=lambda (2)
lambda3=lambda (3)
[E Lambda]=eig(S)

disp (’Separate out eigenvectors:’)

el=E(:,1)
e2=E(:,2)
e3=E(:,3)

% let ’s check that Matlab found the right wvectors
Sel=Sxel

lambdalel=lambdalx*el

errorsl=Sxel—lambdal=xel

Se2=Sx*e2

lambda2e2=lambda2x*e2

errors2=Sxe2—lambda2xe2

Se3=Sxe3

lambda3de3=lambda3*e3

errors3=Sxe3—lambda3xe3

Let’s find some eigenvalues and eigenvectors!
The "strain rate" matrix S in Couette flow:
cC= 1

S =
0 1 0
1 0 0
0 0 0
lambda =
-1
0
1

Separate out the eigenvalues:

lambdal = —1

lambda2 = 0

lambda3 = 1

E =
—0.70711 0.00000 0.70711
0.70711 0.00000 0.70711
0.00000 1.00000 0.00000

Lambda =

Diagonal Matrix

19

-1 0 0
0 0 0
0 0 1
Separate out eigenvectors:
el =
—0.70711
0.70711
0.00000
e2 =
0
0
1
ed =
0.70711
0.70711
0.00000
Sel =
0.70711
—0.70711
0.00000
lambdalel =
0.70711
—0.70711
—0.00000
errorsl =
0
0
0
Se2 =
0
0
0
lambda2e2 =
0
0
0
errors2 =
0
0
0
Sed =
0.70711
0.70711
0.00000
lambda3ed =
0.70711

20

0.70711

0.00000
errorsd =

0

0

0

About symmetric matrices

As already noted, a matrix A is symmetric if it equals its transpose; A=A".
There are some special rules for the eigenvalues and eigenvectors of symmetric
matrices:

1. The eigenvalues are always real, not complex.

1. The eigenvectors can be taken to be mutually orthogonal unit vectors. It
is said that the matrix of eigenvectors is "orthonormal".

(For complex matrices, these things remain true if you replace "symmetric" by
"Hermitian". A matrix A is Hermitian if it is equal to its complex conjugate
transpose.)
Note: the inverse of an orthonormal matrix is the same as its (Hermitian)
transpose.

% Since our example matriz was symmetric, let 's check
% whether Matlab found the right eigenvalues and

% eigenvectors. The eigenvalues, —1, 0, and 1, are
% indeed real, check.

% the length of the wvectors can be computed using norm
elLength=norm(el)
e2Length=norm/(e2)
e3Length=norm(e3)

% or dot the wvector with itself and take square root
elLength=sqrt (el 'xel)
e2Length=sqrt (e2’'xe2)
e3Length=sqrt (e3’*xe3)

% vectors are orthogonal if their dot product is zero
ele2=el "xe2
e2e3=e2’xe3
edel=e3d 'xel

% a quicker way is to check that ET E is the unit matriz

ET=E’
E

21

ET+E

elLength = 1

e2Length = 1

e3Length = 1

elLength = 1

e2Length = 1

e3Length = 1

ele2 =0

e2ed =0

edel =0

ET =
—0.70711 0.70711 0.00000
0.00000 0.00000 1.00000
0.70711 0.70711 0.00000

E =
—0.70711 0.00000 0.70711
0.70711 0.00000 0.70711
0.00000 1.00000 0.00000

ans =
1.00000 0.00000 0.00000
0.00000 1.00000 0.00000

0.00000 0.00000 1.00000

ADDITIONAL REMARKS

In left division, Matlab will examine the matrix and if the matrix has special
properties that warrant a special solution procedure, select it. To save Matlab
time or force it to use a given procedure, you can use linsolve, which allows you
to specify options.

If the matrix is "sparse', i.e. it is a big matrix whose elements are almost all
zeros, you should create it as a Matlab sparse matrix. This avoids wasting
storage to store all these zeros, and wasting computational time to do trivial
operations on all these zeros. You can create Matlab sparse matrices with the
sparse function. If the matrix is a band matrix, i.e. the nonzero elements are
along 45 degree downward diagonals, function spdiags may be a more suitable
way to create the sparse matrix.

End lesson 5

22

	Initialization
	SOLVING LINEAR SYSTEMS OF EQUATIONS
	The problem we want to solve
	Put the problem in vector matrix form
	Solve the system the correct way
	Problematic matrices
	MATRIX MANIPULATIONS
	Transposes
	Matrix multiplication
	More matrix multiplication
	Parts of matrices
	Special matrices
	Eigenvalues and eigenvectors
	A simple example
	About symmetric matrices
	ADDITIONAL REMARKS
	End lesson 5

