

Virtual Design Review 5 Team 505

-

Danfoss Stepper Motor Lifecycle Fixture

Team Introductions

Bradford Andrews Mechatronics Engineer

Albert Auer Mechanical Design Engineer

Presenter

Chaney Bushman Manufacturing and Test Engineer

Joseph Garvie Systems Engineer

Mason Herbet CAD Designer

Presenter

Mason Herbet

Sponsor and Advisors

<u>Sponsor</u> Cole Gray Senior Mechanical Design Engineer <u>Academic Advisor</u> Patrick Hollis, Ph.D. Associate Professor & Undergraduate Coordinator

<u>Academic Advisor</u> Shayne McConomy, Ph.D. Senior Design Professor

Mason Herbet

Project Description

The objective of this project is to design and produce a stepper motor lifecycle test fixture for Danfoss Turbocor to improve user-friendliness and reliability over their current testing procedure.

Stepper MotorLifecycle TestCurrent TestingMason Herbet

Stepper Motor Lifecycle Test Current Testing

Mason Herbet

What is it?

 A stepper motor lifecycle test aims to evaluate the expected lifespan and reliability of the motor under typical operating conditions.

Why does Danfoss use it?

- Quality control
- Customer Confidence
- Varied Motor Manufacturers

Proposed Lifecycle

Actual Lifecycle

Stepper MotorLifecycle TestCurrent Testing

Mason Herbet

Starting Point

Perma-Tork

Uses permanent magnets to apply a constant torsional load to the central shaft

Reasons to Use:

- Eliminates unnecessary friction
- Requires no power supply
- Allows manual torque adjustment

Albert Auer

Customer Needs

One Direction Test

Runs continuously in one direction (CW CCW)

Similarities

- Constant speed (pulses per second)
- Constant resistance torque (N-m)
- Run until failure (motor cannot rotate)
- Track total runtime and total rotations

Switches direction after a designated period of time (cycle time)

FAMU-FSU College of Engineering

Albert Auer

Alternating Test

Albert Auer

Concept Selection

Customer Needs

Motor is oriented downwards

Assumptions

Standard 120V Outlet

Fixture housed on 16in wire shelf

Targets/Metrics

Adjust Cycle Time (0-300sec)

Adjust Speed (0-250pps)

Track Rotations (>98% Acc)

H-Frame Prototype

Team 505

Albert Auer

Concept Selection

Prototype Improvements

Consolidation of stepper motor wiring to top plate

Design choices for easy CNC machining

Addition of baseplate to accommodate HMI

H-Frame Prototype

Structure Design Changes

Improvements

Plexiglass paneling

Aluminum Structure

Standardization of fasteners

Albert Auer

HMI Integration

Hardware Integration

- 1) Status LEDs
- 2) LCD Screen
- 3) Rotary Encoder

Safety and compliance

8-pin Molex Connector

Custom PCB

Coupler with Fastened Magnet

Albert Auer

Software

Joseph Garvie

Main Electronics

Team 505

Software

Joseph Garvie

Hardware

1994

22222

Custom Printed Circuit Board (PCB)

- Two-Layer with mounting holes for each component
 - Plug-in connectors for sensor and motor wiring
- Pins on PCB match corresponding pins on Arduino board

Software

Hardware

ce

FAMU-FSU

College of Engineering

Software

Joseph Garvie

HMI User Interaction

0

Software

HMI User Interaction

- Continuous Rotation Direction
- Alternating Rotation Direction

Screen Adjustment Knob

- Rotate to scroll through test parameters
- Push to confirm selection

Software

Joseph Garvie

HMI User Interaction

*Represents the number of shaft rotations in one direction before switching to the opposite direction and repeating

Software

HMI User Interaction

Joseph Garvie

Software

HMI User Interaction

Joseph Garvie

Software

HMI User Interaction

HMI Display & Test Status

- Display test results on LCD screen
- Red/green LEDs indicate test completion status (motor failure)

Joseph Garvie

Future Improvements

into fixture

Mason Herbet

Updated Budget

Expected Future Costs

• Printed Circuit Board

• Powder coat machined parts

Mason Herbet

Finalize Code

Conduct

Fixture

Testing on

Future Work

Organization

Wire

FAMU-FSU

College of Engineering

Questions?

