

Team Members

Ahmari Avin Computational Engineer

Brightson Bazile Systems Engineer

Michael Rodriguez
Capera
Manufacturing
Engineer

Daniel Mack Design Engineer

Craig Yox Materials Engineer

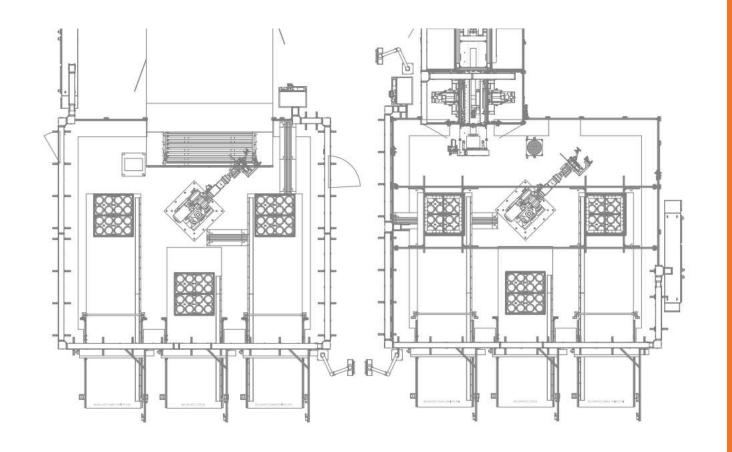
Sponsors and Advisors

CORNING

Jeffery Roche Heavy Duty Project Manager

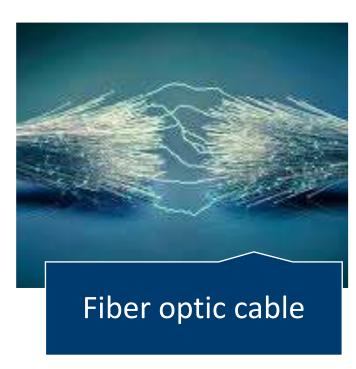
Trent Brush Project Leader

Shayne McConomy, Ph.D. Professor/Sponsor

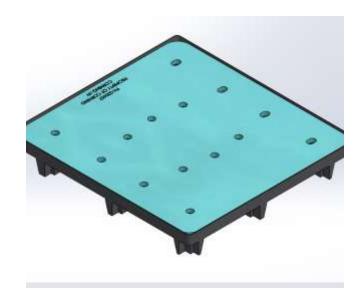


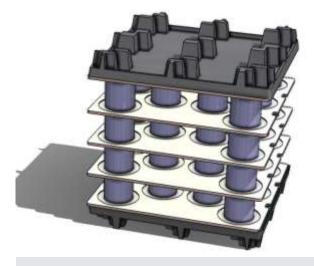
Christian Hubicki, Ph.D. Project Advisor

Objective


The objective of this project is to design an automated device to assist in Corning's current palletization and depalletization process through the placement and removal of pallet toppers and embedded foam layer.

Background




Project Summary

Pallet Topper with foam

Ceramic Cylinder Stacked on pallet.

Complete Assembly with Topper

Key Goals

Sizing Constraints

Safety Measures

Automation

Placement/Removal

Markets

Primary

- Corning and Team Sponsor.
- Diesel particulate filter manufactures

Secondary

- John Deere (Agricultural)
- Kroger (Super Market)
- SSI Schaefer
- Ford (Auto)

Assumptions

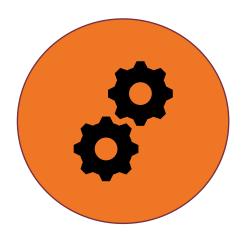
The device will have easy access to a power supply.

The pallet stacking surface will stable and uniform.

Controlled Environment within the warehouse.

The pallet stacks are removed from conveyor system quickly.

Each pallet topper and foam piece are uniform in size.

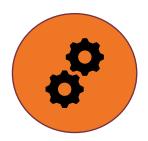


Stakeholders

Stakeholder	Investors	Decision Makers	Advisors	Receivers
Dr. McConomy			/	✓
T.A.'s			/	
Dr. Hubicki			/	/
Corning		/	/	/
Team 504		/		
OSHA		·		
Secondary Market				

Customer Needs

Efficiency Synthesis


Spatial Constraints

Physical Constraints

Efficiency/Synthesis

Needs:

- Improve current palletization/depalletization process
- Communicate with Corning's current system
- Read differing heights of pallets

Spatial Constraints

Needs:

- Fit within the current or adjusted cell
- Stagnation area
- Operates without interfering with current robots

Physical Constraints

Needs:

- Matches speed of employee efforts
- Ability to lift the weight of the pallet topper
- Move pallet toppers and foam layers without damage

Functional Decomposition

Currently in Progress of being completed

Future Work

Targets and Metrics

Concept Generation and Selection

Risk Assessment

Bill of Materials

Prototype and Modeling

