

Team 502: Boeing Underwater Glider

-

Jake Burns, Tristan Hardy, Nicolas Lorin Justin Sepulveda, Martin White

Team Introductions

Jake Burns Simulations Engineer Tristan Hardy *Modeling Engineer Presenting* Nicolas Lorin Controls Engineer

Justin Sepulveda Systems Engineer **Presenting** Martin White Materials Engineer Presenting

Sponsor and Advisor

Project Sponsor Shawn Butler

Project Sponsor JaQuan Young

Academic Advisor Shayne McConomy

Faculty Advisor Kourosh Shoele

Justin Sepulveda

Objective

The objective of this project is to simulate and construct an underwater glider.

Justin Sepulveda

4

Key Goals

Justin Sepulveda

Customer Needs

Motion

• Operates at depths up to 10 feet.

Sensing Capabilities

- Collects data about
 environment
- Processes data to make adjustments

Simulation

- Optimal path simulations
- Performance while operating

Justin Sepulveda

Functional Decomposition

9

Ideation Methodology

Potential Concepts

Boeing Wave Glider

DC Motor Glider

Potential Concepts

Boeing Wave Glider

Final Concept Selection

Main Features

Digital Model

- Dive planes
- Entirely buoyancy driven

Physical Model

- Propellors
- Dive planes
- Not buoyancy driven
- Emulates motion of digital model

Flow Separation Studies

What is flow separation

- Occurs when the fluid detaches from the body
- Results in a "separation region"

Why is flow separation bad

- Increased drag
- Vortices which can create vibrations on the body causing unwanted fatigue
- Cavitation bubbles in water
- All decreases efficiency

How can flow separation be used

- SolidWorks Flow Simulation toolbox was used to find surface pressure
- Force values can be resolved, which give can be used for the control law

Separation region

Flow on an asymmetric airfoil

First Double Airfoil Case

- V = 80 in/s
- P = 5 psi

First Double Airfoil Case

- V = 80 in/s
- P = 5 psi

FAMU-FSU College of Engineering

Tristan Hardy

Double Airfoil At Angle of Attack

- V = 80 in/s
- P = 5 psi
- Back airfoil pitched -10 degrees

Tristan Hardy

FAMU-FSU

College of

Engineering

Double Airfoil At Angle of Attack

- V = 80 in/s
- P = 5 psi
- Back airfoil pitched -10 degrees

20

Tristan Hardy

FAMU-FSU

College of Engineering

Double Airfoil At Angle of Attack

- V = 80 in/s
- P = 5 psi
- Back airfoil pitched -10 degrees

Desired Angle of Attack

-

Desired Velocity

Martin White

FAMU-FSU College of Engineering

Martin White

FAMU-FSU College of Engineering

FAMU-FSU College of Engineering

MATLAB Simulation

4

3

2

0

-2

-3

-4

-5

-8

Depth (feet)

FAMU-FSU College of Engineering

Future Work

Connect on LinkedIn

