

Inlet Guide Vane Testing System

Team 510 | Thiago Todesco | Hunter Dabbs | Tye Fountain | Joseph Bechara

Sponsor: Yiwei Liu | Adviser: Dr. Shayne McConomy

Objective

Develop an apparatus that tests the functionality of four different Danfoss Inlet Guide Vane (IGVs), prompting the operator with a pass or fail message.

Background

Goal:

Develop a reliable testing system to check the functionality of the IGV.

Assumptions

Workspace won't change

Production ready IGV

Operator able to lift 50 lbs

Current State of Design

Current Prototype

How it Works

Key Targets

Indicator ball moves

Open/Close IGV

Supply power to IGV

Challenges

Danfoss's Base Plate

80/20 Al Beams

Laser Sensors

Hall Sensor

2-Axis Displacement Plate

Monitor

Electrical Housing

Arduino

The operator presses the start button.

Senses movement of IGV blades through the laser transmitter and receiver and movement of the ball indicator location through magnetic flux sensor

A Contain lasers

Laser alignment

Color sensor range/accuracy

Once the test concludes, the operator will receive a message through the monitor's screen indicating either a pass or fail, along with the specific type of IGV that was tested.

Future Work

- Integrate barcode scanner
- Reference IGV's code instead of color

IGV is removed from the testing fixture and testing concludes.