

Team 513 Operation Manual

Jared Carboy, Kaden Lane, Carlos Sanchez, Axcell Vargas

FAMU-FSU College of Engineering

2

Project Overview

Figure 1: CAD Design

Project Description

 The RE-RASSOR robot is the scaled down 3D printed version of the NASA RASSOR

robot intended for research and educational purposes. The cost to transport payloads to the moon

is astronomical, and the Florida Space Grant Consortium is looking to find new and innovative

methods to lower the costs of moving robots to the lunar surface. By reutilizing the base of the

RASSOR robot, the robot can be used for a wide range of tasks, including transportation. Team

513 has been tasked with modifying the robot base as well as any other components to design a

collaborative transport system capable of lifting and moving 100 earth pounds.

Project Objective

Repurpose the RE-RASSOR mining robot into a transport system that can lift and move

heavy payloads on the moon.

Component/Module description

Modules

The following modules are all major components of our design that all utilized in the

transportation process. The electrical module includes wiring information, a connection diagram,

and all electrical components being used. This module is responsible for the control aspect of the

design. The lifting module is responsible for lifting the payload. This module consists of the 5-

bar linkage and the shoulder joint. The final module is the connection module. This module is

responsible for the connection to the sample payload and consists of a V-shaped hook and a gear

connection.

Electric Module

3

 The electric module is responsible for the control aspect of the transporter. Its parts

include stepper motors, stepper motor drivers, an IMU, an Arduino Mega 2560, a 12V power

supply, and wiring. A wiring diagram containing these components can be seen below.

Figure 2: Wiring diagram for electrical components

This diagram displays how all electrical components in the design interact. The +12V represents

the power supply which is plugged directly into an outlet. All these electrical components enable

for the vertical lift and horizontal movement of our design.

Lifting Module

This module not only controls vertical lift but is also responsible for the stability of the

robot as it controls motion in both the vertical and horizontal axis. The shoulder uses a gearbox

to generate optimal torque from the stepper motor in effort to rotate the shoulder about the robot

body. The 5-bar linkage design attaches to the shoulder to drive the end effector upwards to

4

generate a vertical lift. The bottom linkages are attached directly to the shoulder via a flange

joint. The top linkages are divided into two components joined via a press fit in effort to fit the

linkage on a 3D printer bed. The top linkages are connected to the bottom linkages with a pin

that slides through the bearings at the connection points. To achieve the vertical lift, the shoulder

generates torque from the stepper motor, driving the bottom linkages upward, ultimately forcing

the end-effector at the end of the top linkages to rise.

Connection Module

This module controls the connection from the robot to the payload. It consists of a 1:1

gear connection at the end effector with an attached V-shaped hook. The V-shaped hook is

connected via pins and bearings that slide through the middle of the gear connection. The 1:1

gear ratio ensures that the hook is constantly in line with the center of the robot body regardless

of the orientation of the 5-bar linkage. With the hook and gear connection the robot can

successfully attach to any payload within the appropriate peg connection.

CAD Design (Lifting & Connection Modules)

 This section includes the CAD models of the overall design, including the lifting and

connection modules.

Figure 3: Assembled shoulder joint

Figure 4: Exploded view of the shoulder joint

5

Figure 5: Assembled front view

Figure 6: Assembled side view

Figure 7: Assembled top view

6

Integration

Shoulder Assembly

 The shoulder joints are reutilized from the Senior Design group at Florida Polytechnic.

The complete assembly of the shoulder can be seen in Figure 4. Although the shoulder for our

design was modeled using the Florida Polytechnic design group, the shoulder from a group here

at FAMU-FSU may be used given the same flange joint is used. A different shoulder, however,

may operate differently. Assembly instructions as well as the operation manual for the shoulder

joint from the Florida Polytechnic team can be found linked below.

https://www.tinkercad.com/things/llDLYpZLnE6?sharecode=ltq_opnFMI9BRfd7aKXxHR_n65

xQ-vriE18I-1rYTIc

Transport Assembly

 The assembly for the transport system is relatively easy and can be seed in the CAD

assembly below. The process will begin with the attachment of the bottom linkages (Item 1) to

the flange joint seen in figure 3 using the M3 bolts and nuts. Once both bottom linkages are

completely attached to the shoulder, the bearings (Item 5) can then be attached to the joint at the

end of the bottom linkage with a simple press fit. If unable to press fit, it is recommended to

align the center axis of the bearing to the center axis of the joint and use a mallet until the

bearing is within the edges of the link. The same process can be used to attach the bearings to the

top linkages (Item 2), the gear linkage (Item 3), and the hook (Item 4) connection points. Once

the bearings are inserted into the top linkages, align the center axis of the bearings from the

bottom linkages with those from the top linkages with the top linkage in the center. When

aligned, slide the smaller pin (Item 6) through the center of the bearings until through the

opposite end. Now, the gear linkage can be easily pressed onto the peg extruding from the top

linkage. The final step is to align the bearings from the hook connection points with those in the

gear linkages. When aligned, slide the longer pin (Item 7) through the bearings until through the

opposite end. Now, the transport system should be entirely assembled onto the shoulder joints

and ready for operation.

https://www.tinkercad.com/things/llDLYpZLnE6?sharecode=ltq_opnFMI9BRfd7aKXxHR_n65xQ-vriE18I-1rYTIc
https://www.tinkercad.com/things/llDLYpZLnE6?sharecode=ltq_opnFMI9BRfd7aKXxHR_n65xQ-vriE18I-1rYTIc

7

Figure 8: Bill of Materials

Operation

The target metrics for the sample payloads required to be transported on the moon is a

2x2x2m cube and a 5m long cylinder with a 0.5m diameter, both with an even weight

distribution weighing 100 earth lbs. With four total connection points, each robot must be

capable of lifting a minimum of 25 lbs. The designed connection pegs on the payload are placed

1.5m from each other and 0.25m above the ground. To test the functionality of the design, the

two robots are placed 1.5 meters apart with a starting height of 0.25m measuring from the ground

to the bottom of the hook. The weight is tested with a standard weightlifting barbell with free

weights attached on either end to reach the desired weight of 50 lbs. The pegs are modeled to the

same metrics as the end of a barbell. Once aligned and the weight applied, the user can run the

Arduino code to inform the robots to lift the payload 150mm upwards in the z-direction.

Once the robots prove capable of lifting the desired weight the total height, the robots are

then tested on an incline of 5 degrees. Both robots are placed the same distance away on top of

the designed slope. Once the weight is placed on the hooks of the robots, the orientation sensor

automatically sends information to the controller to adjust the orientation of the shoulders to

adjust the payload.

8

Troubleshooting

 If there are any issues that arise when attempting to operate the design, there are few

aspects that should be double checked that may be causing an issue. Primarily, as the wiring is

quite complicated, it is important that all connections to the Arduino, the stepper motor, stepper

motor drivers, and the power supply. It is possible they were arranged incorrectly, or wires came

loose during operation. Another issue that could arise involves any debris within the gearbox in

the shoulder hindering its ability to provide enough torque. An issue that arises when 3D printing

is that material can come loose and fall within the gear connections, prohibiting proper rotation.

Finally, issues may arise with the automation of the design. If there are any complications with

the stability of the robot on inclines, check to ensure the code is running properly. If it is not,

redownload the provided code and try again.

9

Appendix A – CAD Drawings

10

11

12

13

14

Appendix B – Arduino Code

#include <math.h>

// link lengths

double w = 0.34;// % gnd link (rerassor body)

double a1 = 0.175;// % link 1 (inner 5-bar link)

double a2 = a1;// % link 1 on the right side (the same bc yeah)

double b1 = 0.385;// % link 2 (outter 5 bar link)

double b2 = b1;// % link 2 read 2 comments up

double ground_th = 0;

double gnd_th = 0;

void stpCtrlR();

void stpCtrlL();

int steps[4] = {0b1,0b1000,0b010,0b100};

int stepsR[4] = {0b1,0b1000,0b010,0b100};

int stepsL[4] = {0b100,0b10,0b01000,0b1};

int i = 0;

//right motor

double desThR = 0;

int curPosR = 50;

int desPosR = 50; // desired pos

//left motor

double desThL = 0;

int curPosL = 50;

int desPosL = 50; // desired pos

//stepper delay

int dt = 50;

void setup() {

 // put your setup code here, to run once:

 DDRA = 0xFF;

 DDRB = 0xFF;

 Serial.begin(9600);

 delay(5000);

}

void loop() {

 // define height of lift

 double h = 0.3; // meters

 int ddt = 13;

 if(i<80){

 h = .3;

 gnd_th = 0;

 }else if(i<160){

 h = .5;

 gnd_th = 0;

 }else if(i<160+ddt){

 h = .5;

 gnd_th = gnd_th + .015;

 delay(10);

 }else if(i<160+ddt*3){

 h = .5;

 gnd_th = gnd_th - .015;

 delay(10);

15

 }else if(i<160+ddt*4){

 h = .5;

 gnd_th = gnd_th + .015;

 delay(10);

 }

 else if(i<160+ddt*6){

 Serial.print(i);

 Serial.print("\tEND\t\t\t");

 h = .5;

 delay(50);

 }else{

 h = .3;

 }

// if(i==250)

// i=161;

 Serial.print("thgnd = ");

 Serial.print(gnd_th*180/3.14159265359);

// // read pot for ground angle

// double sensorValue = analogRead(A0);

// // map the pot value to a radian value

// double ground_th = map(sensorValue, 0, 1023, -2.35, 2.35);

// ground_th = sensorValue/1023*4.7-2.35;

// if(ground_th > 0.0873) // upper limit

// ground_th = 0.0873;

// if(ground_th < -0.0873) // lower limit

// ground_th = -0.0873;

 ground_th = 1.57 - gnd_th;

//

// ground_th = 0;

//

// Serial.print("g_th = ");

// Serial.print(ground_th);

 // calcualte xp and yp that will balence the robot

 double yp = h*sin(ground_th);

 double xp = h*cos(ground_th);

///TEST//

//////////////////

// if(i<100){

// xp = 0;

// yp = .3;

// }else{

// xp = 0;

// yp = .52;

// }

//

// if(i==200)

// i=0;

///

//////////////////

16

 // calculate the motor angles based on x and y

 angCalc(xp,yp); // returns value in desThR and desThL

// Serial.print("xp = ");

// Serial.print(xp);

// Serial.print("\typ = ");

// Serial.print(yp);

//

// Serial.print("\tthR = ");

// Serial.print(desPosR);

// Serial.print("\tthL = ");

// Serial.println(desPosL);

 desPosR = (desThR / 0.0314)+1; // convert to steps

 desPosL = desThL / 0.0314; // convert to steps

 Serial.print("\tdesThL = ");

 Serial.print(100-desPosL);

 Serial.print(" ");

 Serial.print(100-curPosL);

 Serial.print("\tdesThR = ");

 Serial.print(desPosR);

 Serial.print(" ");

 Serial.println(curPosR);

//

///TEST//

//////////////////

// if(i<100){

// desPosR = 20;

// desPosL = 20;

// }else{

// desPosR = 50;

// desPosL = 50;

// }

//

///

//////////////////

 stpCtrlR();

 stpCtrlL();

 delay(dt);

 i++;

}

// caluclates motor angles based on an x and y coordinate centered at the

midpoint

void angCalc(double xp,double yp){

 xp = xp+0.34/2;

 double c1 = sqrt(pow(xp,2) + pow(yp,2));

 double c2 = sqrt(pow(xp-w,2) + pow(yp,2));

 double alpha1 = acos(xp/c1);

17

 double alpha2 = acos((-xp+w)/c2);

 double beta1 = acos((pow(b1,2) - pow(a1,2) - pow(c1,2))/(-2*a1*c1));

 double beta2 = acos((pow(b2,2) - pow(a2,2) - pow(c2,2))/(-2*a2*c2));

 desThL = beta1+alpha1;

 desThR = 3.14159265359-(beta2+alpha2);

// Serial.print("desThL = ");

// Serial.print(180-desThL*180/3.14159265359);

//

// Serial.print("\tdesThR = ");

// Serial.println(desThR*180/3.14159265359);

}

// move motor on the right based on desPosR

void stpCtrlR(){

 // move CW

 if(curPosR < desPosR)

 curPosR++;

 // move CCW

 if(curPosR > desPosR)

 curPosR--;

 //move the stepper motor or hold it if curPos = desPos

 PORTA = steps[curPosR%4];

}

// move motor on the left based on desPosL

// the direction of the angle is reversed from moving the right motor

void stpCtrlL(){

 // move CW

 if(curPosL < desPosL)

 curPosL++;

 // move CCW

 if(curPosL > desPosL)

 curPosL--;

 //move the stepper motor or hold it if curPos = desPos

 PORTB = steps[curPosL%4];

}

