
Running head: OPERATION MANUAL 1 

Team 505 Operation Manual 

Milton Bouchard, Michael Dina, Onoriode Onokpise, Jackson Raines, and Zachary Shapiro 

FAMU-FSU College of Engineering 

Author Note 

This project is sponsored by the Center for Intelligent Systems, Control, and Robotics (CISCOR) 

  



OPERATION MANUAL 2 

Using the Tool ..................................................................................................................... 5 

Acronyms and Terminology................................................................................................ 5 

MATLAB GUI .................................................................................................................... 5 

Starting a New Project .................................................................................................... 5 

Loading a Previous Project ............................................................................................. 6 

Database Browser ........................................................................................................... 6 

Creating a New Database ............................................................................................ 7 

Importing a Database .................................................................................................. 8 

Robot Design .................................................................................................................. 9 

The Sketch View ....................................................................................................... 10 

Scaling Properties. .................................................................................................... 10 

Running Calculations .................................................................................................11 

Deliverables (Work in Progress) ................................................................................... 12 

Bill of Materials ........................................................................................................ 12 

Web Resources .......................................................................................................... 13 

Architecture and Models ................................................................................................... 15 

System Composer ............................................................................................................. 15 

Architecture Overview .................................................................................................. 15 

Simulink ............................................................................................................................ 18 

Modeling Assumptions ................................................................................................. 18 

Motor Model ................................................................................................................. 20 



OPERATION MANUAL 3 

Battery Model ............................................................................................................... 22 

Leg Linkage Model ....................................................................................................... 23 

Source Code ...................................................................................................................... 24 

MATLAB GUI Code..................................................................................................... 24 

GitHub Access .............................................................................................................. 32 

 

  



OPERATION MANUAL 4 

Figure 1 Design Tool Start Page ..................................................................................................... 5 

Figure 2 The Database Browser ...................................................................................................... 6 

Figure 3 Creating a New Database ................................................................................................. 7 

Figure 4 The Database Creator ....................................................................................................... 7 

Figure 5 Loading a Database .......................................................................................................... 8 

Figure 6 Robot Design Tab ............................................................................................................. 9 

Figure 7 Robot Sketch View ......................................................................................................... 10 

Figure 8 Dynamic Scaling ............................................................................................................ 10 

Figure 9 Run Simulink Analyses ...................................................................................................11 

Figure 10 Deliverables Tab ........................................................................................................... 12 

Figure 11 Generating a Bill of Materials ...................................................................................... 12 

Figure 12 Saving Values ............................................................................................................... 13 

Figure 13 Website links to motor .................................................................................................. 13 

Figure 14 Launching Simulink ..................................................................................................... 15 

Figure 15 Simulink Start Page ...................................................................................................... 15 

Figure 16 Start a new System Composer Architecture ................................................................. 16 

Figure 17 System Composer Architecture .................................................................................... 17 

Figure 18 Linking to Simulink Models ......................................................................................... 18 

Figure 19 Motor Model Architecture ............................................................................................ 21 

Figure 20 To Workspace Components .......................................................................................... 21 

Figure 21 Out Bus Element........................................................................................................... 22 

Figure 22 Battery Model Architecture .......................................................................................... 23 

Figure 23 Leg Linkage Model Architecture.................................................................................. 24 



OPERATION MANUAL 5 

Using the Tool 

The following sections explain how to use the design tool from uploading a database to 

utilizing the output deliverables. 

Acronyms and Terminology 

MATLAB GUI 

Starting a New Project 

Figure 1 shows the start page of the design tool. To start a new project, open the tool and 

select “New Project”. The tool will proceed to the Database Browser tab with basic values in 

place. You can also start a new project from the File menu. 

Figure 1 
Design Tool Start Page 

 

Note. When the user starts our tool, they are greeted with this page. 



OPERATION MANUAL 6 

Loading a Previous Project 

To load a previous project, select “Load Project” at the start screen. Select an appropriate 

project “.m” file, and your previous robot databases, adjustment values, and deliverables will be 

loaded. 

Database Browser 

Figure 2 shows the Database Browser. The Database Browser allows for selecting which 

robot database is currently active in the tool. Select a database to view its description and 

contents in the details pane on the right-hand side. 

Figure 2 
The Database Browser 

 

Note. The Database Browser allows the user to view robots already in their database and add new 

ones. 



OPERATION MANUAL 7 

Creating a New Database 

Figure 3 
Creating a New Database 

 

To create a new database, select the “New Database” button in the lower left corner of the 

Database Browser screen. Figure 3 shows this button. You can also select “New Database” from 

the File menu. Selecting this will load the Database Creator window. 

The Database Creator 

The Database Creator allows for the creation of new robot databases, based on data 

collected from robot measurements. Figure 4 shows this window. The name entered in the Robot 

Name field will be used as the filename for the final database file. Enter in the physical 

characteristics or attributes for each field listed, then click Save to File to record this information. 

The database file format is a “.mat” Matlab file. 

Figure 4 
The Database Creator 



OPERATION MANUAL 8 

 

Note. The user can create a new robot database by providing the robot’s parameters. 

It is greatly recommended to include both a description and an image file for future 

reference, as these display once the database is selected in the Database Browser. Once finished 

with your entry, close the Database Creator window to return to the main window. 

 

Importing a Database 

Figure 5 
Loading a Database 

 

Click “Load Database” from either the File Menu or the lower portion of the Database 

Browser will allow you to select an appropriate “.mat” database file. When loaded, the Database 

will appear in the Available Databases pane. Select the database to show its detailed information 

as well as the included picture, as seen in Figure 2. Click the checkmark next to the database(s) 



OPERATION MANUAL 9 

you wish to work with, then click “Save Selection” in the bottom right corner of the Database 

Browser to confirm and record your selections to your project file. Click Next to continue to the 

Robot Design tab. 

Robot Design 

The Robot Design tab acts as the primary center for working on and modifying your 

robot based on the database selected earlier. 

Figure 6 
Robot Design Tab 

 

Note. The user can change different parameters of an old robot to see how the overall design 

changes. 

Actions taken in each pane of this tab, as well as other actions throughout the tool, are 

recorded in the log at the bottom. To save this log for future reference, click “Export Log” at the 

bottom right corner. Note, this log will also be saved in your project file. 



OPERATION MANUAL 10 

The Sketch View 

Figure 7 
Robot Sketch View 

 

Note. The user can see a sketch view of the robot, which updates live as parameters are changed. 

The Sketch View displays a simple 2-D sketch of the layout and proportions of the robot, 

with its physical characteristics listed underneath and to the left. When performing scaling 

operations, the 2-D sketch of the robot will automatically update to reflect the new dimensions. 

To the right are attributes of the robot's motor and battery, used for the modeling operations. 

Scaling Properties. 

Figure 8 
Dynamic Scaling 



OPERATION MANUAL 11 

 

Note. The Dynamic Scaling laws used are based on length scaling. 

To the right of the sketch view is the Scaling Rules pane. Entering in a scaling value here 

and pressing “Submit” will allow you to size the robot based on the laws of dynamic scaling. The 

physical dimensions of the robot will update both numerically in their associated fields, as well 

as in the sketch view. Once scaling has been performed, the Reset will become enabled, allowing 

you to set the scaling factor back to 1, and resetting the state of the robot to the initial database. 

Running Calculations 

Figure 9 
Run Simulink Analyses 

 

To run the current suite of Simulink models through System Composer, select the 

“Submit” button in the Modeling pane. These calculations will use the mass listed in the Total 

Body Mass (kg) field at the top of the sketch view for the robot. A progress bar will appear once 

this option is selected, so please wait as running these models can take some time. Once 

complete, the motor and battery attributes in the sketch view will update accordingly. 



OPERATION MANUAL 12 

 

Deliverables (Work in Progress) 

Figure 10 
Deliverables Tab 

 

Note. The deliverables tab is currently a work in progress, but we hope to return critical 

parameters, as well as links, to help reduce the time to order. 

After calculations using model functions have been performed and values for specific 

design parameters such as motor power or battery mass, you then have full functionality of the 

deliverables tab.  

 

Bill of Materials 

Figure 11 
Generating a Bill of Materials 



OPERATION MANUAL 13 

 

 To populate the text boxes, select the “Generate Bill of Materials”.  The text boxes will 

be populated with values to be later used in the process of generating links to a variety of sources 

to purchase materials from. To save these values for later, select the “Save Values” button in the 

middle of the screen. These values will be saved locally, allowing you to reference them later. 

Figure 12 
Saving Values 

 

 To begin looking at purchasing options for components generated from the bill of 

materials, select the “Link to” button for the specific component you are interested in. These 

buttons open your browser directly to the products page of the specific vendor CISCOR has used 

historically for those components. If you would rather save copy the link, the “Copy to 

Clipboard” functionality button is located directly to the right of the link. 

Figure 13 
Website links to motor 

 

Web Resources 

As stated above, all links generated are to the products page of vendors that CISCOR has 

used in the past to purchase these components. To further assist in your search for the proper 



OPERATION MANUAL 14 

part, filters have been applied directly within the links to narrow down search results on their 

catalog pages. Currently, motors are being purchased from Maxon (www.maxongroup.us) and 

batteries are being purchased from MaxAmps (www.maxamps.com). As more board component 

types are added to the bill of materials functionality, they will be searched through McMaster-

Carr (www.mcmaster.com).    

http://www.maxongroup.us/
http://www.maxamps.com/
http://www.mcmaster.com/


OPERATION MANUAL 15 

Architecture and Models 

The following sections explain how the System Composer architecture is set up and how 

to change it, and they explain how to find and update the underlying Simulink models. 

System Composer 

Architecture Overview 

There are several ways to launch System Composer. You can launch MATLAB and 

navigate to the Home Tab and the Simulink group, shown in Figure 14a and Figure 14b, 

respectively. Press the Simulink button. 

Figure 14 
Launching Simulink 

 

Note. a) shows the Home Tab in MATLAB where the Simulink group and button (b) are located. 

The Simulink button launches Simulink, and  

Figure 15 shows the start page. It defaults to the new tab, but you can press open in the 

top left, shown in orange, to open an existing architecture. This project’s architecture is called 

“robotModel.slx.” To start a new architecture, you can open the System Composer dropdown, 

highlighted in red. For the robot software design tool, the user should only have to open the 

existing functional architecture not make a new one. 

 

Figure 15 
Simulink Start Page 

a) b) 



OPERATION MANUAL 16 

 

Note. The Simulink start page shows recent files as well as different templates for creating a new 

model. 

There should not be a need to create a new functional architecture, but Figure 16 shows 

the templates for doing so. The user can create an Architecture Model or a Software Architecture 

Model. 

Figure 16 
Start a new System Composer Architecture 

 



OPERATION MANUAL 17 

Note. This figure shows the templates for creating a new System Composer Architecture. 

The architecture file called “robotModel.slx” should now be open. The current functional 

architecture consists of three components: motor, battery, and leg links. The components are 

represented graphically as boxes within a larger box that represents the overall system. Figure 17 

below shows the system with its smaller component boxes. 

Figure 17 
System Composer Architecture 

 

Figure 17 – A picture of the System Composer components used in the design tool. 

The blue and orange Simulink logo is in the top right of each component in Figure 17. 

This shows that there is a Simulink model attached to the System Composer component. To 

access the underlying model, double-click on the component. This opens the model in Simulink 

and allows you to modify it, which will be described in more detail in the next section. If an 

existing model is not attached to a component, right-click on the component and click “Create 

Simulink Behavior.” If the Simulink model already exists, select “Link to Model”. Figure 18 

shows both these options in purple and green, respectively. 



OPERATION MANUAL 18 

Figure 18 
Linking to Simulink Models 

 

Note. The user has the option of creating new models or linking existing ones to System 

Composer components. 

 Component blocks also have interfaces between each other. Figure 17 shows one such 

interface between the motor and battery components. This allows data from the components to be 

shared between them. These ports extend into the embedded Simulink models, but the Simulink 

side will be discussed in more detail later. The interfaces can be created before or after a 

Simulink model is attached to a component; however, it is important to note that attaching an 

existing Simulink model to a component removes any ports created before the model was 

attached. This is not an issue if a new model is created and attached. 

Simulink 

Modeling Assumptions 

To simplify our analyses, we made several analyses based on recommendations from our 

sponsor Dr. Clark. We document these now so the user can better understand the context of the 

tool’s outputs and so these assumptions can be later updated. 



OPERATION MANUAL 19 

 Our tool uses ET-Quad, a quadrupedal robot built by CISCOR, as the primary focus of 

our database and validation. ET-Quad uses a trot and 60% duty cycle for its walking gait at 2.5 

Hz. A trot means that the diagonal pairs move together, and a 60% duty cycle means that the foot 

is on the ground, in stance, for 60% of the stride time. The stride frequency is 2.5 Hz, so a 

complete stance and flight cycle is completed at 2.5 Hz. This information is used for calculating 

the torque and speed requirements of the motors. 

 We also assume that the force felt by a foot is 3 times the weight of the robot divided by 

the number of legs on the ground:  

Equation 1 
Force on the foot 

𝐹 =  
3𝑚𝑔

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐿𝑒𝑔𝑠 𝑖𝑛 𝑠𝑡𝑎𝑛𝑐𝑒
 

Since we assumed a trot gait, the force on a foot becomes 1.5 times the weight of the robot. We 

also assumed a leg length of 0.2 m to start our Simulink analyses, but this is likely to change as 

we update the model. The tool will use the values input from the user or from loaded databases. 

The torque calculations also need a touchdown angle to determine the stance torque. For the 

purposes of our analyses, we assumed this angle to be 30° measured clockwise from the 

horizontal. We also assumed that the foot’s angle velocity followed a trapezoidal trajectory. The 

foot accelerates and decelerates each for half of the stance phase, and the angular velocity is 

constant during flight. Using our duty cycle, the acceleration and deceleration each take 0.12 s. 

The angular acceleration is linearly approximated using the change in angular velocity over the 

change in time from stance and flight. This angular acceleration is used in our calculation for 

stance torque. 

 We plot the speed and torques in flight and stance and use them to determine the motor’s 

torque-speed curve. Real motors are not linear, but, for simplicity, we assumed that the torque 



OPERATION MANUAL 20 

speed curve is linear. This allows us to determine the no-load speed and stall torque, which are 

used to describe a motor’s specifications. On this linear speed curve, it is assumed that the 

middle of the curve represents the peak power output. 

When concerning the batteries being used in our model, we assumed them to be LiPo 

batteries and only 80% of the total charge is being used. The power required by the motor is also 

assumed to be the power the battery needs to generate. 

Motor Model 

Figure 19 below displays the architecture of the motor model. The simple motor model is 

split into a flight phase and stance phase. For each of the phases the frequency and the torque are 

also being calculated. The computations for each phase can be found within each labeled 

subsystem and displayed through the labeled display blocks. When looking further into the 

computation blocks and smaller subsystems, they are labeled according to the calculations the 

blocks are performing.  

The torque and frequency values for both phases are used to determine the stall torque 

and no-load speed. These values are also shown through display blocks. Each of these values are 

then used to find the motor’s power output. 



OPERATION MANUAL 21 

Figure 19 
Motor Model Architecture 

Figure 19

 

Note. A picture of the Simulink Motor Model. 

The block components in the motor model shown below in Figure 20 are used to send 

values back to the MATLAB workspace. The no-load speed, stall torque, and power are all 

calculated values based on the user input that are being displayed on the GUI.  

Figure 20 
To Workspace Components 

 

Note. A picture of the to workspace block elements used in the Motor Model. 

 In the bottom right corner of Figure 19, there is a MotorSpecs.power out bus element. 

This is used to export the power value calculated from the no-load speed and stall torque to other 

components found on the system composer interface. In this case, the motor model is exporting 



OPERATION MANUAL 22 

the power value to the battery model. Below demonstrates the out bus element being used in the 

Simulink Motor Model. 

Figure 21 
Out Bus Element 

 

Note. A picture of the Out Bus Element used in the Motor Model. 

Battery Model 

Figure 22 shows the battery model. It takes in the power required by the motor from the 

MotorSpecs.power, which we assume is the power that the batteries need to supply. The 0.8 

denotes an assumption that we will not drain the battery more than 20% and the Time block 

denotes out runtime requirement. These feed into a product block that multiply them together. 

From there, the model calculates the capacity in amp hours that will be required for batteries 

with different numbers of cells.  



OPERATION MANUAL 23 

Figure 22 
Battery Model Architecture 

 

Note. A picture of the Simulink Battery Model. 

Leg Linkage Model 

The leg model shown below in Figure 23 uses a Demux block to split vector signals into 

scalar values. The struct going into the Demux block is taken from the MATLAB workspace that 

is determined from the user input. Each subsystem is labeled with the designated leg designs that 

the user can select when designing their robot. The complex equations pertaining to each leg 

design are not yet inputted into each subsystem. However, the framework for further 

development is set up to do so. 



OPERATION MANUAL 24 

Figure 23 
Leg Linkage Model Architecture 

 

Note. A picture of the Simulink Leg Linkage Model. 

Source Code 

MATLAB GUI Code 

This tool is open source and intended to be adjusted and modified towards the needs of its 

users. Coding for the user interface and basic calculations in this tool are handled through the 

MATLAB App Designer interface, which allows for the graphical and programmatic 

modification of this tool. 

MATLAB App Designer 

The App Designer can be launched from within MATLAB by switching to the Apps 

ribbon and selecting “Design App”. You can also launch the App Designer by selecting a 

“.mlapp” MATLAB App file from the Current Folder pane. 



OPERATION MANUAL 25 

 

Once selected, the App Design loads into the Start Screen. To work on this tool, either 

select “Open” to choose the file, or select the tool from the “Recent Files” listed right below. 

 

By default, once a file has been selected, App Designer opens to the Design View. This 

shows the current app in the center, with the Component Library to the left, and the Component 

Browser to the right.  



OPERATION MANUAL 26 

 

To add a component to the app, drag the component from the library panel, and place it in 

the main app screen. To add a particular behavior to a UI (User Interface) element, right click the 

element and highlight the “Callbacks” option. This will give you the option to either go to the 

specific location of the callback in the code, or add a callback if one has not already been made. 

 

 

Callbacks are functions tied to each element of the UI, and are typically activated upon 

clicking the element. Standard MATLAB code works in these callbacks, with some minor 

differences to be aware of, as compared to regular MATLAB coding: 

• The App Designer is a fully object-oriented interface. Callbacks, other functions, and 

variables can be specified to be private or public. These elements are considered objects 



OPERATION MANUAL 27 

of the main app, and so typical formatting for elements will appear as 

“app.element.value”. 

• Apps have their own independent variable Workspace that is different from the “base” 

workspace used in MATLAB and Simulink by default. This app workspace is not visible, 

however. It is recommended to keep track of your variables and values through visual 

elements. 

For details on the function of each particular app component, please refer to the 

MATLAB Help documentation. From now on, the functions referenced are specific to this tool. 

Custom Functions 

The following are a selection of functions central to the operation of this tool. 

• Robotgrapher   

o Used to update the sketch view based on the currently selected database 

o Called when the current model is updated via scaling 

% Handle all the graphing in the Robot Design tab 

function robotgrapher(app,robotinfo) 

% Clear whatever was already in the plot 

cla(app.UIAxes); 

% Plot the robot 

% Robot body  

body = rectangle(app.UIAxes,'Position',[2, 2, robotinfo.body.length, 

robotinfo.body.height],'FaceColor','b','Curvature',1); 

% Robot legs 

foreleg = line(app.UIAxes,[7,7], [3,3-

robotinfo.leg.length],'linewidth',5,'color','#404040'); 

rearleg = line(app.UIAxes,[robotinfo.body.length-3 



OPERATION MANUAL 28 

robotinfo.body.length-3 ... 

], [3 3-robotinfo.leg.length],'linewidth',5,'color','#404040'); 

% Update the side values 

app.LegThicknesscmEditField.Value = robotinfo.leg.thickness; 

app.LegWidthcmEditField.Value = robotinfo.leg.width; 

app.LegLengthcmEditField.Value = robotinfo.leg.length; 

app.BodyHeightcmEditField.Value = robotinfo.body.height; 

app.BodyLengthcmEditField.Value = robotinfo.body.length; 

app.BodyWidthcmEditField.Value = robotinfo.body.width; 

app.TotalBodyMasskgEditField.Value = robotinfo.body.totalmass; 

app.StallTorqueNmEditField.Value = robotinfo.motor.stalltorque; 

app.NoloadSpeedRPMEditField.Value = robotinfo.motor.noloadspeed; 

end 

• DynamicScale  

o Function which governs and applies scaling rules 

o Current functionality passes the entire temporary database to this function, and 

returns the database with unedited portions copied over. 

function [newModelParam] = dynamicScale(app,modelParam,a_length) 

% This function dynamically scales the parameters in the struct 

modelParam 

% according to the length scaling factor a_length 

newModelParam.body.length = modelParam.body.length * a_length; 

newModelParam.body.height = modelParam.body.height * a_length; 

newModelParam.body.width = modelParam.body.width * a_length; 

newModelParam.leg.length = modelParam.leg.length * a_length; 

newModelParam.leg.width = modelParam.leg.width * a_length; 



OPERATION MANUAL 29 

newModelParam.leg.thickness = modelParam.leg.thickness * a_length; 

newModelParam.body.totalmass = modelParam.body.totalmass * a_length^3; 

% Return duplicates of the other fields  

newModelParam.name = modelParam.name; 

newModelParam.description = modelParam.description; 

newModelParam.motor.mass = modelParam.motor.mass; 

newModelParam.motor.stalltorque = modelParam.motor.stalltorque; 

newModelParam.motor.noloadspeed = modelParam.motor.noloadspeed; 

newModelParam.battery.capacity = modelParam.battery.capacity; 

newModelParam.battery.mass = modelParam.battery.mass; 

end 

• LoadDatabaseMenuSelected 

o Handles importing a database and distributing it throughout the tool 

o Creates two copies of the imported database: editingdatabase as the temporary 

model to be worked on, and editingshadow which is used as a control to reset to 

o Automatically builds the database description based on its contents 

o Passes the database to Robotgrapher to update the sketch view 

% Load the database from file 

loadingdatabasefile = uigetfile(".mat"); % This gets the filename 

% Bring the window back into focus 

app.UIFigure.Visible = 'off'; 

app.UIFigure.Visible = 'on'; 

load(loadingdatabasefile); % load the database 

app.editingrobot = robot; % Put the database into a temp struct that 

we work on 

app.editingshadow = robot; % Put the database into a second struct to 



OPERATION MANUAL 30 

reset to later 

% Grab some metadata for later 

robotmeta = dir(loadingdatabasefile); 

% Grab the names of all the database fields 

editingdatabasenames = string(fieldnames(app.editingrobot)); 

% Build the description 

robotdetailtext1 = sprintf("Database: %s \n\n",app.editingrobot.name); 

robotdetailtext2 = sprintf("Available Nodes: %s, %s, %s, %s 

\n\n",editingdatabasenames(1),editingdatabasenames(2),editingdatabasen

ames(6),editingdatabasenames(7)); 

robotdetailtext3 = sprintf("Description: %s 

\n\n",string(app.editingrobot.description)); 

robotdetailtext4 = sprintf("Date Modified: %s \n\n",robotmeta.date); 

robotdetail = 

append(robotdetailtext1,robotdetailtext2,robotdetailtext3,robotdetailt

ext4); 

app.TextArea.Value = robotdetail; 

% Read data from the script and put it in a tree 

firstdatabasenode = uitreenode(app.Tree); 

firstdatabasenode.Text = app.editingrobot.name; % Database name should 

be the 3rd entry 

% Update the overview picture 

app.Image.ImageSource = app.editingrobot.image; 

% Call the robot plotting function 

robotgrapher(app,app.editingrobot); 

Database Structure 



OPERATION MANUAL 31 

The following is the current layout of each entry of a robot database, as of the writing of this 

tool. Each robot database is stored as a structure withing a MATLAB “.mat” file. These 

databases can be created with the Database Creator tool launched from the Database Browser. 

• Robot (Struct Main) 

o Name 

o Description 

o Image 

o Body 

▪ Total Body Mass 

▪ Sensor Package Mass 

▪ Length 

▪ Width 

▪ Height 

o Leg 

▪ Thickness 

▪ Width 

▪ Height 

▪ Mass 

o Motor 

▪ Mass 

▪ Stall Torque 

o Battery 

▪ Capacity 

▪ Mass 



OPERATION MANUAL 32 

GitHub Access 

A public GitHub repository contains the latest version of the code base. Click here for the 

link. The repository is public to view but private to edit. To request editing access, please contact 

the CISCOR lab. 

 

https://github.com/Mikeyy365/FAMU-FSU-SD-T505-2023

	Using the Tool
	Acronyms and Terminology
	MATLAB GUI
	Starting a New Project
	Loading a Previous Project
	Database Browser
	Creating a New Database
	Importing a Database

	Robot Design
	The Sketch View
	Scaling Properties.
	Running Calculations

	Deliverables (Work in Progress)
	Bill of Materials
	Web Resources


	Architecture and Models
	System Composer
	Architecture Overview

	Simulink
	Modeling Assumptions
	Motor Model
	Battery Model
	Leg Linkage Model

	Source Code
	MATLAB GUI Code
	GitHub Access


