

Team Members

Sara Bradley Mechatronics Engineer

Connor Bishop Electrical Engineer

Spencer Martin Electrical Engineer

Mariam Medina
Systems
Engineer

Garett
Southerland
Materials
Engineer

Kenneth Zhou Mechanical Engineer

Sponsor and Advisor

Sponsor
Cassie Bowman, Ph.D.
Associate Research Professor,
ASU

Academic Advisor
Shayne McConomy, Ph.D.
ME Teaching Faculty, FSU

Objective

The objective of this project is to create interest in the Psyche Mission with an interactive exhibit.

Project Overview

It is believed that Psyche is the remains of a planetesimal with an iron-nickel core that experienced many violent collisions.

The problem is ensuring a lasting interest in the Psyche Mission and Science, Technology, Engineering, Art, and Math (STEAM).

Critical Targets

Smaller than 125 square ft

One STEAM Related Concept

Maximum of \$1000

50% of
Information
should relate
Psyche & Earth

Validation of Targets

Measure with a measuring tape

Track orders and budget use with a spreadsheet

Review displayed content and track information

Original Final Concept

IR pointer game + spacecraft controls

Asteroid Design

Fully 3D printed

Fully paper mâché

Mix of paper mâché and 3-D printed pieces

Future Asteroid Work

Rotating Asteroid Model

Future Asteroid Work

Integrate IR emitters

Adding texture and sculpting other asteroid features

Painting (add more)

DDR Design

Capacitive Sensor

Contact Sensor

Wood Structure +
Polycarbonate
Panels

DDR Design Future Work

Testing

Addition of a second DDR pad

Connection to the asteroid model

Connection to the asteroid model

IR Design

Psyche asteroid IR sending code

IR scanner receiving code

Hardware prototyping for the communication network

IR Design Future Work

Integrate into
Psyche asteroid
design

Integrate into IR scanner design

Implementation of the information displays

Blaster Design

Fully 3D printed exterior

1:16 scale with the actual spacecraft

Button used to actuate a receiver works individually

Blaster Design Future Work

Test durability and gather feedback on ergonomics of design

Modify design and reprint parts as feedback is given

Integrate button and receiver into blaster

Structure Design

Made of wood 4x4's and sheathing panels

Design not finalneeds to be easier to build

Accessibility Considerations

Height of text panels

Ease of use for people in wheelchairs

Angle of text panels

Structure Design Future Work

Simplify fabrication

Design and integrate electrical components

Split panels into smaller ones

Information Displays

Locked panels

Rotating information cylinder

Interactive Aspects

Repeat the pattern or Simon Says game

Interact with IR sensors to unlock information panels

Rotate the asteroid using dance pads

Interactive Aspects Future Work

Integrate the games with elements on the exhibit

Integrate electromagnets into display panels

Integrate the rotating asteroid with dance pad

Full Design

Garett Southerland

other

References

- "A mission to a Metal World," *Psyche Mission*, 21-Jul-2022. [Online]. Available: https://psyche.asu.edu/. [Accessed: 06-Oct-2022].
- "Access smithsonian," *Access Smithsonian | Access Smithsonian*. [Online]. Available: https://access.si.edu/. [Accessed: 06-Oct-2022].
- E. Asphaug, J. F. Bell, C. J. Bierson, B. G. Bills, W. F. Bottke, S. W. Courville, S. D. Dibb, I. Jun, D. J. Lawrence, S. Marchi, T. J. McCoy, J. M. G. Merayo, R. Oran, J. G. O'Rourke, R. S. Park, P. N. Peplowski, T. H. Prettyman, C. A. Raymond, B. P. Weiss, M. A. Wieczorek, and M. T. Zuber, "Distinguishing the origin of asteroid (16) psychespace science reviews," *SpringerLink*, 12-Apr-2022. [Online]. Available: https://link.springer.com/article/10.1007/s11214-022-00880-9. [Accessed: 06-Oct-2022].

Summary

After going through the initial design phase and early prototyping, we are in the process of refining and fabricating our designs to make a fully functioning exhibit by 2/25/23.

Additional Slides

PUT EXTRA STUFF IN THE SLIDES AFTER THIS

Accessibility Considerations

How did Psyche get there?

There are three theories, but one leading formation of Psyche:

Psyche believe to be part of a differentiated body, meaning it is what remains of a once larger planet, and experienced iron volcanism.

Current mission?

Psyche is the only metallic core-like body we have discovered and can teach us a lot. The mission is to study using a spacecraft also named *Psyche*.

Future of the mission?

The most recent major update on the Psyche mission was in Feb 2020 when NASA awarded SpaceX the \$117 million contract launch *Psyche*. *Psyche* is scheduled to launch no earlier than 2024.

Our role

Our objective is to raise awareness and interest in Psyche and to get the public excited about the future of the mission.

Psyche Asteroid

 \times + $^+$. $_{ imes}$ Massachusetts

What is Psyche?

A large asteroid the size of Massachusetts!

The leading hypothesis of the formation:

The remains of a Planetesimal with an ironnickel core that experienced many violent collisions.

Figure 3: inside of the rocky layer as it cools

A Metal World?

By observing Psyche from a distance, it is currently believed that Psyche is made of mostly metal because it gives off many reflections.

WHERE IS PSYCHE

ABOUT THE MISSION

Present

Launch a spacecraft to travel to Psyche to further study

Orbit A: Characterization

56 Days (41 Orbits)

Orbit B: Topography 80 Days (169 Orbits)

Orbit C: Gravity Science
100 Days (362 Orbits)

Orbit D: Elemental Mapping

100 Days (684 Orbits)

PRELIMINARY RESEARCH

Accessible Exhibition Design

Museum Visitor Experience

Previous ACCelerate Submissions

ACCESIBLE EXHIBITION DESIGN

Mount small items no higher than 40 in (1015 mm) above the floor

Include closed captioning for audio aspects and alternative text for visual aspects of the design

Construct the top of a case no higher than 36 in (915 mm) above the ground

Figure 6: Wall mounting

Figure 7: Table display

MUSEUM VISITOR EXPERIENCE

On average, families spend 1.6 minutes on an individual exhibit and non-families spend 1.1 minutes.

Mean Time per Exhibit			
	Family	Nonfamily	Average
Weekday	1.9ª	0.9ª	1.4
Weekend Average	1.3	1.2	1.3 1.4
Note. All times are in minutes. Values are averaged over both exhibitions. aThese values are statistically different from one another.			

Figure 8: Time spent at each interactive exhibit

CURRENT RESEARCH

Survey on Target Audience

Social Media Interaction

Power Source Access

Eighth Grade Level Concepts

Low-Cost Fabrication

KEY GOALS

Interactive and Informative

Durable

Affordable

MARKETS

Museums

Planetarium

Academia

CUSTOMER NEEDS

The product has the ability to have a user interact with it.

The product has the ability to simulate the user's senses.

The product has the ability to run without a wall outlet if one is not availble.

The product should use little to no custom parts outside of parts that are 3D printable

The product has
the ability to
hide
components
that are not
meant for the
user to touch.

Indirect

Audibly

Attracts

Audience

Psyche **Exhibit**

Presence of STEAM Draws Parallels to Earth Visually

Attracts

Audience

Promotion

Presenter Name FAMU-FSU Engineering

Education

Psyche

Mission

Simplifies

Difficult

Concepts

Psyche Exhibit

Initial Impact

Visually Interesting

Indirect Presence

Promotes
Social Media
Presence

Encourages Audience to Approach Visually Attracts Audience

Audibly Attracts Audience

