

Team Introductions

Grant Giorgi Orthopedic Bioengineer

Erin Perkus
Biomaterials and
Biopolymers
Engineer

Timothy Surface Manufacturing Engineer

Abrea Green Clinical Engineer

Tessany Schou Materials Engineer

Nicholas Vastano Bioinstrumentation Engineer

Sponsor and Advisor

Surgeon focused. Patient driven.™

Project Sponsor

Tom Vanasse

Director of Engineering, Exactech

Academic Advisor
Stephen Arce, Ph.D.
Professor, FAMU-FSU Engineering

Objective

The objective of this project is to create a functional prototype and complete feasibility testing of a device that can quantitatively measure human bone density.

Total Shoulder Arthroplasty

Purpose

Eliminate source of pain and dysfunction by replacing shoulder joint with artificial components

Total Shoulder Arthroplasty

Common Reasons for Surgery

- Osteoarthritis
- Rotator cuff tear arthropathy
- Avascular necrosis
- Rheumatoid arthritis

Types of Implants

The "Thumb Test"

The "Thumb Test"

The "Thumb Test"

Levels of Bone Density/Quality

Design

Key Goals

Markets

Assumptions

Stakeholders

Dr. Arce

Customer Needs

The device is compliant with FDA regulations

The device measures the PCF of the bone

The device is mechanically operated

The device is compatible with standard sterilization practices

The device is handheld and can be reused

The device is made from non-toxic materials

The device recognizes osteoarthritic bone

Device for Use in Surgery that will Easily and Safely Provide Measurement

Looking Ahead

4 Most Important Points

- 1. Project is to develop a device to measure bone density.
- 2. The customer's needs were discovered.
- 3. These needs were transformed into functions.
- 4. Looking forward the functions will be used to create targets.

Reference

Jordan D. Walters, S. F. B. (n.d.). Anatomic total shoulder arthroplasty with a stemless humeral component - Jordan D. Walters, Stephen F. Brockmeier, 2021. SAGE Journals. Retrieved October 15, 2021, from https://journals.sagepub.com/doi/10.1177/2635025421997126.

Meeting with Tom Vanasse. (2021, October 4). personal.

Reeves, J. M., Vanasse, T., & Langohr, G. D. G. (2021). (working paper). *Indentation Depth as an Objective Supplement to Surgeon 'Thumb Testing.'* ORS.

Reeves, J. M., Vanasse, T., Roche, C., Athwal, G. S., Johnson, J. A., Faber, K., & Langohr, D. G. (2017). *Proximal Humeral Density Correlations: Are We "Thumb Testing" in the Right Spot?* ORS.

Contact the Team

Tessany Schou tas18d@my.fsu.edu

Timothy Surface tjs11f@my.fsu.edu