

Team Introductions

Grant Giorgi Orthopedic Bioengineer

Erin Petkus
Biomaterials and
Biopolymers
Engineer

Timothy Surface Manufacturing Engineer

Abrea Green Clinical Engineer

Tessany Schou Materials Engineer

Nicholas Vastano Bioinstrumentation Engineer

Sponsor and Advisor

Surgeon focused. Patient driven.™

Project Sponsor

Tom Vanasse

Director of Engineering, Exactech

Academic Advisor
Stephen Arce, Ph.D.
Professor, FAMU-FSU Engineering

Objective

Create a functional prototype and complete feasibility testing of a device that assists the surgeon's selection in type of implant used during total shoulder arthroplasty.

Total Shoulder Arthroplasty

Purpose

Eliminate source of pain and dysfunction by replacing shoulder joint with artificial components

Erin Petkus

Types of Implants

Stemmed Implant

Stemless Implant

The "Thumb Test"

The "Thumb Test"

The "Thumb Test"

Levels of Bone Density/Quality

Targets

Length of Creates Reports results Compliant device is indentation less with FDA with 95% than or equal to smaller than regulations accuracy 6 in. 1 in. Device Lifespan Weighs less withstands than or equal greater than temperatures up to 5 lbs. 50 uses to 284°F Abrea Green

Concepts

Tessany Schou

Concept Selection

Rework and 3D Model

Classification & Applicable Standards

- Class I medical device
 - Exempt or 510K
- Relevant Standards
 - ASTM D-1621
 - ISO 10993-20
 - ISO 17665-1 and -2

Abrea Green

Pyramid Drop Testing Procedure

- Pyramid shaped fishing weights through PVC pipe
 - 3 ounces and 50.75 inches
- Depth measured with calipers
- Force back-calculated for varied PCF

Grant Giorgi

Pyramid Drop Testing Results

Nick Vastano

Pyramid Drop Testing Results

$$F = \frac{2}{\pi} \cdot \frac{E^*}{\tan \alpha} \cdot h^m, \quad \text{where}$$

$$E^* = \frac{E}{(1 - \nu^2)} \quad \text{and} \quad m = 2$$

- F: Force (176.9±10% N)
- E*: Young's Modulus of sawbone related to Poisson's ratio
- v: Poisson's ratio for polyurethane foam = 0.25
- α: Angle of incidence (78 Degrees)
- h: Indentation depth

Nick Vastano

Flat Point Testing Results

$$PE = \frac{1}{2}kx^2$$

- Largest indentation depth at 1.5J
- No indentation of 20 PCF at 0.5J
- Target PE = 1J

Abrea Green

Design Refinement

Current Method of Release

Free Position

Loaded Position

Current Method of Release

Free Position

Loaded Position

Internal Design

- Visit to Machine shop
 - Feedback on design
- Changes
 - Removable tip
 - "Washer"
 - Sealing
 - Welding

Readout

Components and Ordering

- Housing and Caps
- Rod
- Tip
- Button Components
- Spring

Validation Testing

Validation Testing

- Loaded spring into completed prototype
- 2. Fired into 4 different PCF sawbone blocks with 3 different orientations:
 - Horizontal
 - 45° Angle
 - Vertical
- 3. Indentation depth was measured using calipers

Grant Giorgi

Validation Testing Results

Grant Giorgi

Validation Testing Results

Depth Gauge

- Diameter is small enough to provide measurements from the device
- Simplistic and cost-efficient design
- Sterilizable

Validation Testing Results

Target	Validation
Compliant with FDA regulations	Exempt or 510k
Device withstands temperatures up to 284 °F	Yes
Creates indentation less than or equal to 1 in.	Yes
Weighs less than or equal to 5lbs	Yes
Length of device is smaller than 6 in.	Yes
Lifespan greater than 50 uses	Yes
Reports results with 95% accuracy	Yes

Future Work

Lessons Learned

Nothing works correctly the first time

Everything takes longer than you expect

Spending time planning early on saves time later

Talk to experts

4 Most Important Points

- 1. Project is to develop a device to measure bone quality.
- 2. Prototype completed
- 3. Conducting validation testing
- 4. Incorporating changes into a final design

Reference

- Anastasio, Okafor, C., Garrigues, G. E., Klifto, C. S., Lassiter, T., & Anakwenze, O. (2021). Stemmed versus stemless total shoulder arthroplasty: a comparison of operative times. Seminars in Arthroplasty, 31(4), 831–835. https://doi.org/10.1053/j.sart.2021.05.013
- Jordan D. Walters, S. F. B. (n.d.). Anatomic total shoulder arthroplasty with a stemless humeral component Jordan D. Walters, Stephen F. Brockmeier, 2021. SAGE Journals. Retrieved October 15, 2021, from https://journals.sagepub.com/doi/10.1177/2635025421997126.
- Meeting with Tom Vanasse. (2021, October 4). personal.
- Reeves, J. M., Vanasse, T., & Langohr, G. D. G. (2021). (working paper). *Indentation Depth as an Objective Supplement to Surgeon 'Thumb Testing.'* ORS.
- Reeves, J. M., Vanasse, T., Roche, C., Athwal, G. S., Johnson, J. A., Faber, K., & Langohr, D. G. (2017). *Proximal Humeral Density Correlations: Are We "Thumb Testing" in the Right Spot?* ORS.

Reference

Zdravkovic, Kaufmann, R., Neels, A., Dommann, A., Hofmann, J., & Jost, B. (2020). Bone mineral density, mechanical properties, and trabecular orientation of cancellous bone within humeral heads affected by advanced shoulder arthropathy. Journal of Orthopaedic Research, 38(9), 1914–1919. https://doi.org/10.1002/jor.24633

Contact the Team

Grant Giorgi gpg18d@my.fsu.edu

Erin Petkus eap18@my.fsu.edu

Timothy Surface tjs11f@my.fsu.edu

Abrea Green
Amg18e@my.fsu.edu

Tessany Schou tas18d@my.fsu.edu

Nicholas Vastano njv18b@my.fsu.edu