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The Competition

➢The Formula 1/10 competition 

gives students an  opportunity 

to learn about perception, 

planning and control for 

autonomous vehicles [1]. 

➢Teams from around the globe build vehicles and design 

algorithms for autonomy before racing one another.  

➢Robot Operating System (ROS) is commonly used to 

implement autonomous navigation. 
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Fig. 1: An autonomous 1/10th scale vehicle. [1]

Roy



Department of Electrical and Computer Engineering

Project Summary
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➢Design and build a 1/10th scale car that can analyze its 
surroundings and navigate around obstacles autonomously.

➢Requirements:
■ Avoid walls and other obstacles without human input.  

■ Make decisions in real time.

■ Operate at a safe and controlled speed.

■ Ability to switch between autonomy and remote control.

■ Adhere to the rules and guidelines of the F1/10 Autonomous                
Racing Competition Rulebook.

■ Theme based on Mel Brook’s 1987 cult classic Spaceballs.
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Stakeholders

➢Sponsor: 

▪ Dr. Jerris Hooker

➢Advisor: 

▪ Dr. Shayne McConomy

➢The Formula 1/10 Autonomous Racing 

Competition 

➢FAMU-FSU College of Engineering
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➢Vehicle will run using the NVIDIA Jetson TX2 which will 

operate using Robot Operating System (ROS).

➢Selected a combination of a LIDAR and a ZED 

stereoscopic camera to collect both a 360° 2D slice of 

wall distances and a 3D mesh of environment in front of 

vehicle.

➢Selected all necessary parts and a configuration that 

abides by competition rules.

➢Began learning ROS as well as testing on the ZED 

camera and collecting data.

Recap: Fall Semester

Roy
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Physical Build of     

the Vehicle

Calisi
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Vehicle Build

➢ Stripped down Traxxas 

1/10th scale Ford Fiesta 

Rally Car chassis.

➢ Mounting brackets and 

platforms 3D printed in PLA.

➢ All components and sensors 

mounted with hex standoffs 

using pre-existing holes.
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Fig. 2: Traxxas RC Rally Car chassis.

Fig. 3: Mounting of Jetson and Powerboard.
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Powerboard Assembly
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Board Specifications:

1. 110mm x 77.30mm

1.6mm thick 

1. Weight: 3.2 ounces 

2. 48 total 

components

3. Input:11.2v 

4. Output: 3v, 6v , 8v 

Fig. 4: Power board model
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Main Components
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● Teensy 3.2-Shield: Jetson - Speed Controller - Servo 

communication.

● 12v DC.v.DC transformer: Steps down power from 11.2v 

to 8v for Teensy 3.2  and IMU.

● 3s LiPO protection circuit: Kills power before voltage 

depletion point and prohibits current fluctuations to 

processing components.

● Sparkfun Breakout board: converts the 6 pin header to 

usb for the communication between the Jetson tx2 and 

the IMU.

● HBR 11.2v LiPo battery: provides all power

Fig. 6: Teensy 3.2 Fig. 7: 12V DC transformer Fig. 8: LiPO protector Fig. 9: Breakout Board

Fig. 10: 11.2V LiPO battery
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Powerboard Assembly
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Fig. 5: Power distribution and wiring diagram

Calisi
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Controls Overview

Vanderpool
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➢ A human driver makes decisions 

based on sensed vehicle-road 

interactions such as:

▪ velocity

▪ acceleration 

▪ forces

▪ noise 

▪ obstacles
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➢ Simplified Model Considers:

▪ Distance and Direction to 

objects

▪ Position, Velocity, and 

Acceleration

▪ position

▪ vibrations 

▪ roll

▪ slip ➢ Controllable Variables:

▪ Steering angle (𝛅)

▪ Motor speed (ω)

Autonomous Control 

Considerations

Vanderpool
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How Do We 

Maintain Trajectory?

➢ Algorithm uses LIDAR 

data to maintain 

equidistance from walls

➢ Camera will give 

distance to objects 

ahead

➢ Slow down when a turn 

is detected and 

accelerate after turn
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Fig. 11: LIDAR creates a 2D 

map of surrounding surfaces.

Fig. 12: ZED Stereoscopic camera 

maps distance in grayscale.
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➢ Keep vehicle driving 

along centerline of track

➢ Manage steering attack 

response times 

➢ Modulate speed to be 

fast on straightaways and 

slow down coming into 

turns
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PID Controller 

Objectives

Fig. 13: The goal is to drive the 

error in lateral distance from the 

centerline to zero. [1]

Vanderpool
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➢Two separate models

▪ ‘Driver’ model controls error in trajectory

▪ ‘Bicycle’ model simulates vehicle physics 
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PID Controller

Fig. 14: Simulink model of PID controller.

Vanderpool
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➢ A simple driver model that 

incorporates predictive behavior.

➢ Variables:
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𝛕 - Time delay
𝛅 - Steering angle

- Steering angle rate of change
Kd  - Gain
𝞇 - Actual yaw angle
𝞇1 - Desired yaw angle
y    - Lateral distance from desired 
trajectory
L    - Preview distance

Genta Driver Model

Fig. 15: Genta Driver Model. [2]

Vanderpool
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➢ Simplifies vehicle kinematics to one wheel per axle

➢ Comprised of linearized equations of motion

▪ ∑F_y , ∑F_x , ∑M_z

➢ Transform into two unknowns: 

▪ Yaw rate  

▪ Sideslip angle (lateral vel.)

➢ Variables of note:

19

Bicycle Vehicle Model

v - velocity

𝛽 - sideslip angle

𝛿 - steering angle

𝞇 - yaw angle

Fig. 16: Bicycle Vehicle Model. [3]

Vanderpool
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Data and Mapping 

Overview

Stiles
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➢ ZED cameras point cloud data 

will be used in order to create 

an accurate depth map of the 

environment

➢ IMU will control localization 

while the RPLIDAR will keep 

track of distances out of ZED 

camera frame

➢ Will use the rviz ROS library in 

order to visualize created map
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Data Collection

Fig. 17: ZED point cloud data.

Fig. 18: Rviz model of camera and IMU.
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➢ Mapping of the environment 

will be generated using the 

Hector SLAM library, which 

utilizes ROS bag files

➢ Since Hector SLAM is 

computer intensive, real time 

localization will use MIT 

Particle Filter Localization

➢ Updates at a rate of 30Hz and 

utilizes GPU, whereas other  

options only use CPU
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Localization

Fig. 19: Hector SLAM generated map.

Fig. 20: Particle Filter Localization.
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➢ Test algorithms in a controlled 

environment before we bring it 

into the real world so that we 

minimize risk of crashing.

➢ ROS ‘Gazebo’ simulator 

software

➢ Loads a world as a .DAE file 

and loads the car. It has a 

physics engine that can 

determine when the car 

crashes into a wall.
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Simulation

Fig. 21: Gazebo 3D model of hallway.

Stiles
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Looking Forward

Swenson
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Budget Update

Swenson
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Progress Update

➢ Vehicle Assembly: 80% Complete

➢Main Concerns:

○ Construction, Implementation and Fine Tuning of 

the Driver and Vehicle models is a difficult task.

○ Translating data from sensors to necessary 

variable inputs for control system.

○ Implementation of travel between offices will 
leave little time for testing

Swenson
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➢Mount powerboard and connect all components

➢ Calibrate VESC PID gains

➢Map gamepad controls to motor outputs

➢ Integrate OpenCV in order to path-find

➢ Run simulations using Gazebo collecting data in 

order to determine best algorithm

➢ Begin testing in real environment

➢ Implement speed controller once path-finder has 
been refined

27

Next Steps

Swenson
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Questions?


