Human Powered Vehicle Team

Virtual Design Review 5 Team 20

Brady Bauer, Edward Bohne, Peyton Lanier, Genevieve Macdonnell and Miguel Rodriguez

Team Members

Brady Bauer Design Lead

Edward Bohne Analysis Lead

Peyton Lanier Team Lead

Genevieve Macdonnell Financial Manager

Miguel Rodriguez Scribe

Peyton Lanier

Human Powered Vehicle Challenge

- Purpose: Allow students to apply engineering principles to develop feasible and sustainable transportation alternatives
- \succ HPVC consists of the following competitions:
 - Design Competition
 - Innovation Competition
 - Women's Speed Competition
 - Men's Speed Competition
 - Endurance Competition

Peyton Lanier

Project Scope

- Design a Human Powered Vehicle that is:
 - Eco-friendly
 - Swift and versatile
 - Safe and reliable
- Create robust vehicle serving as a foundation for upcoming competitions
- > Build prototype
- Market: Megacities (i.e Los Angeles, London, New York, etc.)

Customer Needs

- The 2018 ASME HPVC Rules outline many of our team's constraints and guidelines
- Some primary needs include:
 - Roll protection system
 - Braking system
 - Turning Radius
 - Structural Requirements
 - Safety Features

Functional Decomposition

FAMU-FSU COLLEGE OF ENGINEERING

IECHANICAL ENGINEERING

Human Powered Vehicle Functions:

- Use human input to create mechanical energy
- Transport operator safely
- Transport operator by rolling on wheels
- Enable operator to detect upcoming obstacles
- Enable operator to steer vehicle in desired direction
- Enable operator to travel on government maintained roads

Miguel Rodriguez

Enable operator to alter vehicle's longitudinal acceleration

Target Catalog

Functions	Use human input to create mechanical energy	Transport operator by rolling wheels	Transport operator safely	Enable operator to travel on government roads	Enable operator to steer vehicle	Enable operator to alter the acceleration	Enable operator to detect obstacles
Targets	Wheels: 600 rpm	29 inch wheels	Stops within 6 m for a speed of 25km/hr	Has a head light of at least 300 lumens	Must have a turn radius of 24.6 ft	Each front wheel must have a brake	Driver must have 180 degrees field of view
	Standard bike gear set has 3.25:1 gear ratio	2,3,or 4 wheels	Travel in straight line for 30 m at 5-8 km/hr	Has a tail light of at least 10 lumens			
	CVT has 4.8:1 gear ratio		Has roll protection that can handle loads up to 2670 N				
			Secure driver in the vehicle with shoulder harness				
			Driver is in a recumbant position in vehicle				
			Adjustable Seat				

Target Catalog

Transport operator safely	Enable operator to travel on government roads	Enable operator to steer vehicle	Enable operator to alter the acceleration
Stops within 6 m for a speed of 25km/hr	Has a head light of at least 300 lumens	Must have a turn radius of 24.6 ft	Each front wheel must have a brake
Travel in straight line for 30 m at 5-8 km/hr	Has a tail light of at least 10 lumens		
Has roll protection that can handle loads up to 2670 N			

Concept Generation

Component Options:

- Drivetrain: Chain vs. Belt
- Full rotation pedal vs HANSCycle vs CVT
- Vehicle configuration: 2,3 or 4 wheeled vehicle
- Steering: Steering rack
 vs linkage
- Fairing: Full vs partial vs none

Full Rotation Pedals

Input Disc 3-12 Balls 3-12 Balls Output Disc Ball Axle Output Disc

CVT

HANSCycle

Miguel Rodriguez

Concept Generation (Aerodynamics)

No Fairing

Small Fairing

Full Fairing

Miguel Rodriguez

Current Design

Miguel Rodriguez

Chromoly Frame

Frame Characteristics

- Requires:
 - 24' tube of 1" OD, .083" WT
 - 18' tube of 1" OD, .049" WT
 - 3' tube of 1.25" OD, .095" WT
 - (OD: Outer Diameter)
 - (WT: Wall Thickness)
- Cost: \$399.25 w/ shipping
- Weight: 29.1 pounds
- Vendor: McMaster Carr

Brady Bauer

Chromoly Frame (cont.)

Steering

Interchangeable Pedal Mount

HANS Cycle Peda Configuration

Brady Bauer

Seat and Rider Positioning

 With an alpha of 27° and beta of 114°, the force output is about 700N (150lbf)

Brady Bauer

Current Progress

- Ordered and Purchased Parts
- Generating Drawings
 - Frame
 - Tie rod
 - Wheel mounts
 - Idler gear assembly
- Manufacturing Parts
 - Cutting and welding tube members for frame assembly
- ➤ Budget
 - Remaining: \$125

Peyton Lanier

In The Future

Organize Work Performed

- CAD documents
- Component FEA analysis
- Force calculations
- Evidence book
- Machined parts
- Establishing a Legacy
 - Continue to generate interest from EDM students, ASME and SAE club members, etc.
 - Create a solid framework for future club and or recurring senior design project

Peyton Lanier

References

- [1] <u>https://www.product-lifecycle-management.com/download/MIL-STD-1472F.pdf</u>
- [2] <u>https://www.mcmaster.com/#standard-metal-structural-tubes/=1bkgu1k</u>

Questions?

