
Unison Industries Forced Air-Cooled Heat Sink

Dustin Birchall, Parker Harding, and Tyler Pilet10/16/2017

Introduction

- Unison Industries, LLC is a producer of aircraft electronic components.
- The heat source of interest is a fullbridge rectifier.
 - Rectification converts 3-phase power to DC.
 - Resistive losses occur due to resistance of components.
- Due to the First Law of Thermodynamics the power dissipates into heat.

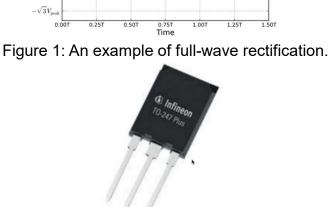


Figure 2: A similarly shaped electrical heat source.

Background

- ➤ Heat Sink Types:
 - Natural Convection Relies upon buoyant forces of air to dissipate heat.
 - Forced Convection Air is mechanically forced through the fins.
- Heat transfer is directly related to fluid-solid interaction surface area.
- For heat sinks, surface area is related to:
 - Fin Number
 - Fin Length
- Thermal conductivity of the material influence heat sink effectiveness.

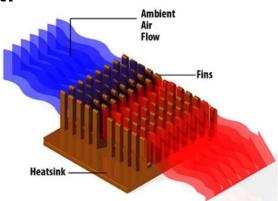


Figure 3: An example of a forced-air heat sink.

Tyler Pilet

Project Description and Key Goals

We have been tasked with designing a heat sink for a small aircraft. The heatsink will be attached to an electronic component that dissipates 300 watts of heat, and needs to operate 135 degrees Celsius.

Goals:

- 1. Light Weight
- 2. Effectively Removes Heat
- 3. Small in Size

Parker Harding

Primary and Secondary Markets

- Primary Markets
 - High power electronic component manufacturers
- Secondary Markets
 - Heat Exchanger Manufacturer
 - General Electronic Manufacturers
 - Aircraft Manufacturers
 - Hobbyists i.e. people building computers

Parker Harding

Assumptions and Stakeholders

> Assumptions

- The heatsink will have a fan attached to aid in the cooling process
- Mounting the heatsink to the electronic is out of our projects scope
- Before prototyping we must use modeling software to prove our design is effective
- Most of the components for our project will be ordered and later the team will assemble them
- Stakeholders
 - Unison Industries, LLC
 - Teams' Reputation
 - FAMU FSU Department of Mechanical Engineering
 - Plane Passangers

Parker Harding

Customer Needs

Table 1: Customer Needs breakdown	
What our sponsor said:	Interpreted Need:
This heatsink will be attached to a small aircraft	The heatsink must be small
	The heatsink must be lightweight
The heatsink must have a fan attached	The heatsink will use forced convection
The junction has a max operating temperature of 150°C, but has a normal operating temperature of 15°C below that	We need to design a heatsink to keep the electronic component operating at a steady state of 135°C, but lower than that can improve performance
We are using funding plan D	The budget for our project is \$2,000
Once you provide data supporting your design we can move forward with building the prototype and testing	The product needs to be tested using computer software before we build

Parker Harding

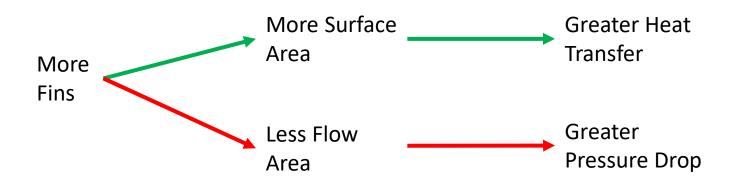
Functional Decomposition

Heat Removal

- Main function is to remove heat from circuitry
- Client has specified forced air heat sink design
- Circuit must operate at T=135C for optimal performance

Figure 4: Forced Air Heat Sink

Dustin Birchall



Functional Decomposition

Optimization

Determine relationships between variables

• For example, fin number and pressure drop:

- Potentially make use of house of quality to keep track of relationships
- Minimized weight and size are desired due to application

Dustin Birchall

Functional Decomposition

Uniform Heat Distribution

- Uniform heat distribution is desirable
- Tools such as R_theta can help test different configurations
- Different geometries affect distribution

Figure 5: Straight Fin Array

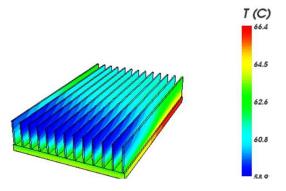


Figure 6: R_theta output

Figure 7: Rotary Fin Array

Dustin Birchall

References

- What is a Heat Sink. (2014, July 1). Retrieved October 08, 2017, from <u>http://www.sunpower-uk.com/glossary/what-is-a-heat-sink/</u>
- Krishnavedala. (2011, July 8). File:3 phase rectification 2.svg. Retrieved October 08, 2017, from <u>https://commons.wikimedia.org/wiki/File:3_phase_rectification_2.svg</u>
- TO-247PLUS Description of the packages and assembly guidelines (p. 3, Tech.). (n.d.). Infineon. Retrieved October 8, 2017, from https://www.infineon.com/dgdl/Infineon-Application Note Discrete IGBT in TO-247PLUS-AN-v02_00-EN.pdf?fileId=5546d46249cd10140149e0c7fe9d56c7
- ➢ Kraus, A. D. (1996). Design and Analysis of Heat Sinks. John Wiley & Sons.
- Future trends in heat sink design (2001, February). Retrieved October 12, 2017 <u>https://www.electronics-cooling.com/2001/02/future-trends-in-heat-sink-design/</u>
- Walker, Kevin.(2017) Unison Capstone Kickoff Project [PowerPoint Slides]

