

Unison Industries Forced Air-Cooled Heat Sink

Dustin Birchall, Tyler Pilet, and Jeffery Rutledge 02/27/2018

Team 19

Dustin Birchall Lead ME

Lucas Pye Recorder

FAMU-FSU COLLEGE OF ENGINEERING MECHANICAL ENGINEERING

Parker Harding Team Leader

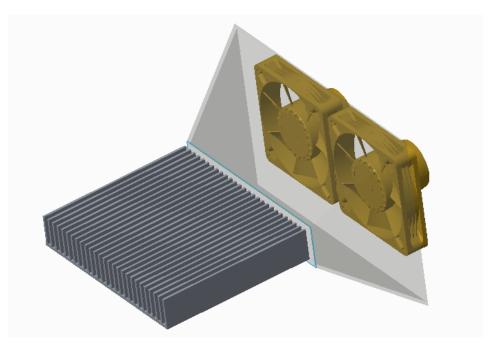
Financial Advisor

Tyler Pilet Lead FEA Engineer

Project Recap

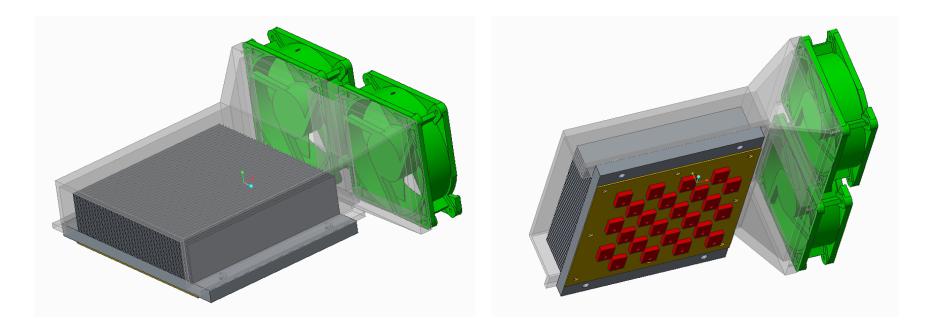
Dustin Birchall

Project Recap


- Team 19 is tasked with developing a forced air, lightweight heat sink that must be able to dissipate 300W of heat and maintain a temperature of 135°C max (preferably lower).
- A full-bridge rectifier, which changes AC to DC, is our heat source. It is necessary to cool this device, as overheating results in electrical failure for the aircraft.
- Objectives:
 - Design and construct a Heatsink to keep the aircraft's circuitry below an operating temperature of 135°C
 - Lightweight
 - Physically small in size
 - Remove Heat
 - Minimize use of our \$2000 budget
 - Efficiently organize 24 Semiconductors in sets divisible by 3

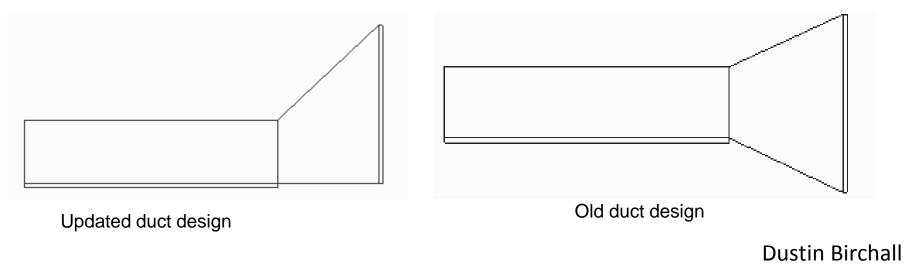
Dustin Birchall

Old Design

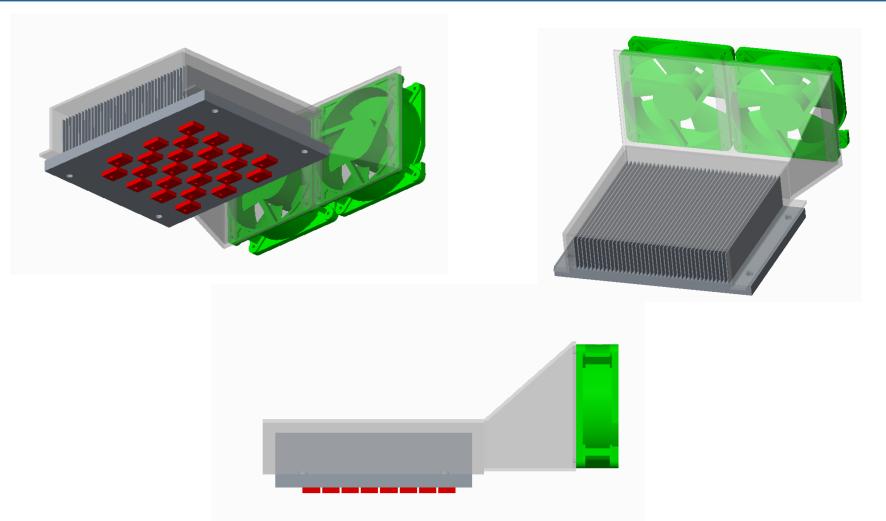

- Where we left off with Design Review 3
- Ideas that were certain:
 - Duct
 - 2 Fans
 - Rectangular Fins
- Possible ideas:
 - Graphite plate
- Find a way to mount fans

Dustin Birchall

Updated Design


- A duct forcing air through entire length of channels of the heatsink.
- Graphite plate to help distribute heat evenly.

Dustin Birchall


Issues

- When we attempted to order our updated design, we were told of ways to make some of the parts cheaper and easier to fabricate.
- For our heatsink fin dimensions, we originally had a spacing of .133 in.
 - \circ $\,$ We changed the dimension to be .125 in, a standard size
 - Saved a couple hundred dollars
- Next for the duct, we had to alter how it constrained the air,
 - We were told by Parker Services that they fabricate the ducts a certain way so we altered our design so that they could easily make ours.

Finalized Design

Dustin Birchall

8

Ordering

Jeffery Rutledge

Aquisitions

- Allied Electronics
 - 30 resistors to act as semiconductors
- Parker Services
 - Sheet metal for fan duct
- Already in Possession
 - Wiring for resistors and fans
 - Screws for resistors
 - Thermal camera
- Ordered
 - 2 Heat Sinks
- To be Ordered
 - 2 Fans
 - ~30 Thermal pads

Jeffery Rutledge

Mersen

	CURRENCY			SHIPPING TERMS				
	USD	Cash-In-Advance			Freight Pre-pay and Add			
Line # Mersen Part #		Description	Customer Part #	QTY	UoM	UNIT PRICE(EA)		
		1						
1	QUOTEITEM	MF178T13A53AF40D		1	EA	329.67		
				3	EA	217.58		
				5	EA	217.58		
¹ Mersen Quote								

PROS:

- R-Theta tool
- Cheap price
- Many designs to choose from

CONS:

- Lead Time: 10 weeks
- Not customizable
- Difficult to mount fan duct onto design

Jeffery Rutledge

COE Machine Shop

- COE Machine Shop
 - Unable to cut the fins
 - Possibly buy new tool to machine it

New Tool: End Mill

• Problems with Machining

- New tool would break easily
- Long time to machine the heatsink
- Machinist didn't want to machine it

Jeffery Rutledge

Velocity Machine Works

- Velocity Machine Works
 - Can make our heatsink
 - Came up with a new fin dimensions to 1/8 inches
 - Lead time: 1 month
 - PO Made by Neil Coker

Terms Net 30		F.O.B. Tallahassee			see	Delivery 3 weeks		Valid thru 3/02/2018	
	Quantity	Runs	Part Number	Rev	Description		Price/Unit	Extension	
	1	1	Heatsink	1	Heatsink		1,396.88	1,396.88	
	3	1	Heatsink	1	Heatsink		1,173.96	3,521.88	
	1	1	Heatsink 3.175		Heatsink 3.175		959.38	959.38	
	3	1	Heatsink 3.175		Heatsink 3.175		736.46	2,209.38	
-								8,694.08	

First revision of Quote

Terms Net 30		F.O.B. Tallahassee		Delivery 45 Days ARO	Valid thru 3/03/2018		
Quantity	Run	s Part Number	Rev	Description		Price/Unit	Extension
2	1	Heatsink 3.175		Heatsink 3.175		792.19	1,584.38
							1,584.38

Second revision of Quote

Budget

- Total Budget: \$2,000
- Current running total spent: \$1,783.42
- Current running total left: \$216.58
- What is left to price:
 - Thermal pads: ~\$50.00

Website	Purchase	Quantity	Cost	Running Total Cost	Running Total Budget
https://www.alliedelec.com/caddock-mp915-20-0-1-/70089556/	Resistors	30	\$52.20	\$52.20	\$1,947.80
https://www.mcmaster.com/#fans/=1bdtg5n	Fans	2	\$146.84	\$199.04	\$1,800.96
https://www.velocitymachineworks.com/	Machine Work	2	\$1,584.38	\$1,783.42	\$216.58

Budget for Team 19

Jeffery Rutledge

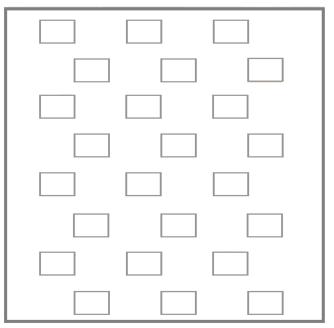
Future Work



Tyler Pilet

Future Work

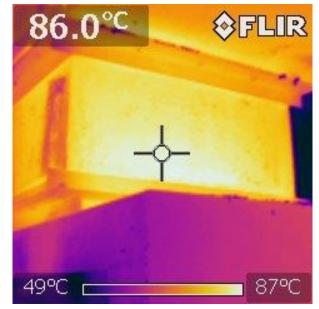
- A duct was required, as the fans are larger than our heat sink's height. The flow needed to be guided through the fins.
- Parker Services, Lucas's employer, donated sheet metal and equipment to produce a duct for our team.
- The duct will be manufactured after fans are received. The lead time a singular day.


A CAD model of our proposed duct.

Tyler Pilet

Testing and Optimization

- In order to determine the resistance and voltage needed, V = I*R and P = I*V were combined and rearranged to produce V = (P*R)^0.5
- The 12.5 W heat dissipation of the semiconductors will be simulated by 20 ohm resistors run at 15.8 VDC.
- The 24 resistors will be placed in a staggered pattern.


A drawing displaying the semiconductor locations.

Tyler Pilet

Testing and Optimization (Cont.)

- The experiment will take place at room temperature.
- Once the system reaches steady-state temperatures, the ambient temperature will be recorded with a thermistor and thermal imaging camera will be used to determine cold spot on the fins.
- k-Type thermocouple pads will be used to verify the thermal image, inlet, and outlet conditions.
- Using the thermal image, cold spots on fins will be determined, and material will be milled off to reduce weight.

A sample thermal image taken last month with Dr. Juan Ordonez.

Tyler Pilet

QUESTIONS?

