Design Review 5

Kite Generator

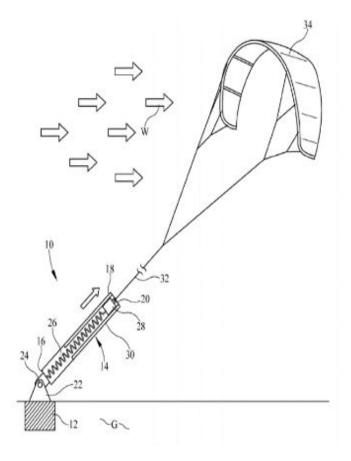
Team 16

Jared Gremley Libni Mariona Simone Nazareth

1

Team Introduction

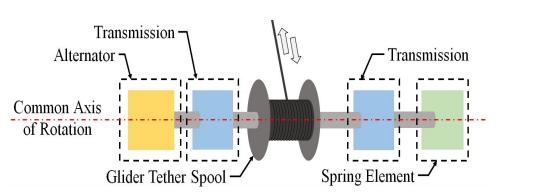
Simone Nazareth Project Background & Recap

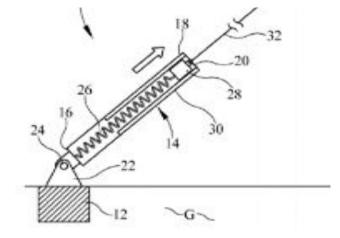


Project Recap

- Project Definition
 - Harness wind energy with portable system
 - Provide power to off-grid locations
 - Ensure ability to perform in varying wind conditions
- Jeff Phipps Patent
 - Kite based electricity generation system
 - Permanent magnet
 - Slides within housing wrapped in electric coil
- Redefined Project Scope
 - Build and test a model to verify patent
 - Analyze solenoid at varying power levels
 - Gas Generators
 - Makani

Presenter: Simone Nazareth

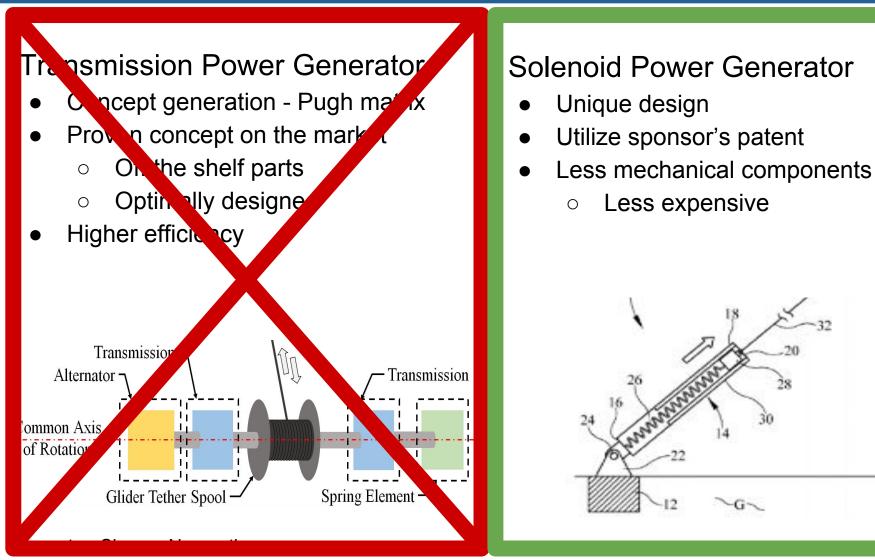



Transmission Power Generator

- Concept generation Pugh matrix
- Proven concept on the market
 - Off the shelf parts
 - Optimally designed
- Higher efficiency

Solenoid Power Generator

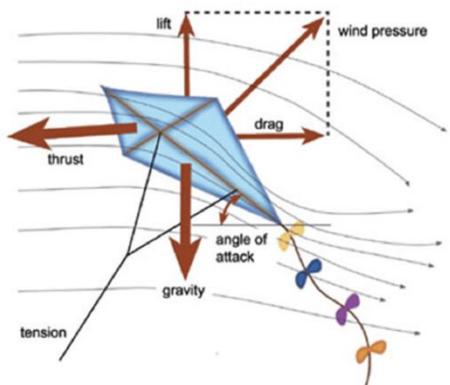
- Unique design
- Utilize sponsor's patent
- Less mechanical components
 - Less expensive



Presenter: Simone Nazareth

FAMU-FSU COLLEGE OF ENGINEERING MECHANICAL ENGINEERING

Concept Selection


FAMU-FSU COLLEGE OF ENGINEERING MECHANICAL ENGINEERING

Aerodynamic Analysis

- Match generator output to mechanical motion of the kite
- To fly a kite:
 - Lift must be greater than weight
 - Thrust must be greater than drag

• Kite Movement:

- Kite will oscillate from varying winds
- Magnet will translate similar to kite
- Lift and drag determine magnet velocity by work-energy theorem

Presenter: Simone Nazareth

Jared Gremley Analytical Results

Kite Analysis

Kite Analysis

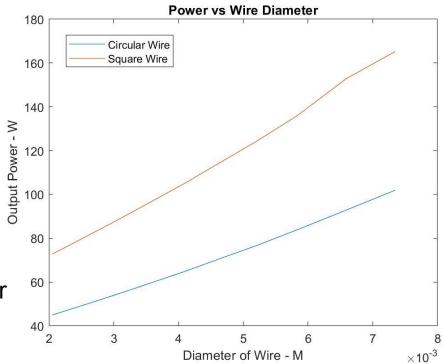
- Modeled Kite
 - Tantrum 220 Prism Kite
- Velocity Data
 - "Data Experiment Name"
 - 6 min average wind speed
- Determine Resultant Force acting on Kite
 - Iterated over varying angles of attack
 - Solenoid sized from max wind gust
 - Minimum flight velocity
 - Maximum sustained winds
 - Does not factor wind gust

Minimum wind speed	0.49 m/s
Maximum wind speed	15.2 m/s
Maximum speed change	14.6 m/s
Maximum Resultant Force	650 N
Average Solenoid Length	0.25 m

Presenter: Jared Gremley

Power Output Analysis

- Optimize Power Output
 - Maximize Electromotive force
 - Maximize wrappings
 - Minimize resistance
 - Maximize wire diameter
 - Maximize magnet velocity
 - Induce maximum change in magnetic flux
 - Square vs Round Wire
 - Square produces higher power
 - Larger cross-section
 - Decreases resistance


Wire Diameter	7.35 mm
Voltage	0.97 V
Current	136.98 A
Resistance	7.10 mΩ
Wrappings per layer	17
Layers	4
Total Wrappings	68
Projected Power Output	133 Watts

Presenter: Jared Gremley

Power Output Analysis

- Optimize Power Output
 - Maximize Electromotive force
 - Maximize wrappings
 - Minimize resistance
 - Maximize wire diameter
 - Maximize magnet velocity
 - Induce maximum change in magnetic flux
 - Square vs Round Wire
 - Square produces higher power
 - Larger cross-section
 - Decreases resistance

Presenter: Jared Gremley

Parts & Purchasing

- Parts used from previous year
 - (1)* 3" Neodymium Magnet
 - (1)* DC Motor
- All purchase orders have been made
 - (1)* 26 Pound AWG 1 Magnet Wire \$300
 - (2)*Sch 40 3.5" x 2' PVC Pipe \$8
 - (1)*Multimeter
 - (2) Springs
 - (3)Aluminum Plates
 - (5)Fiberglass Rods
 - (1)Crank Wheel
 - (1)Square Eye Plate
- Approximate Budget Spent

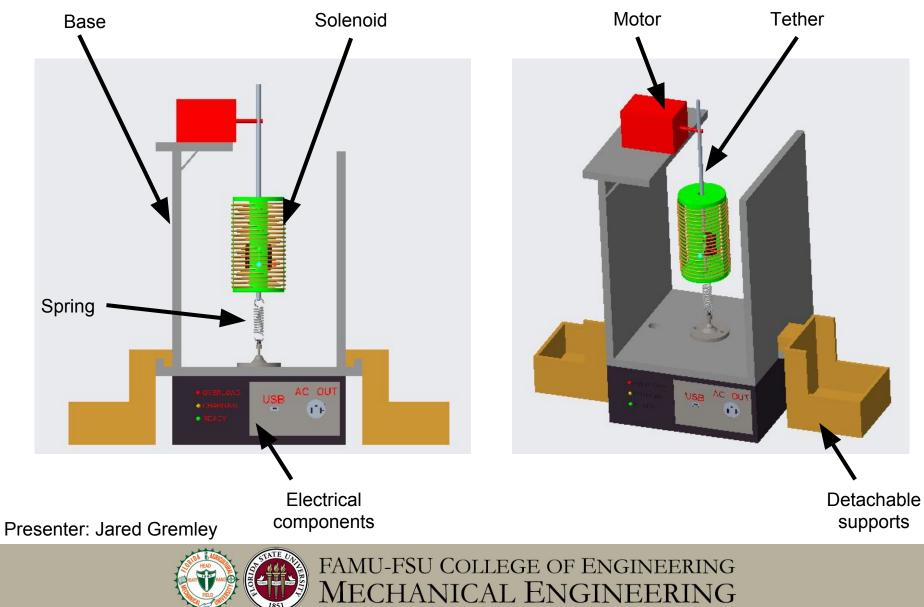
* indicates parts received

Presenter: Jared Gremley

\$50

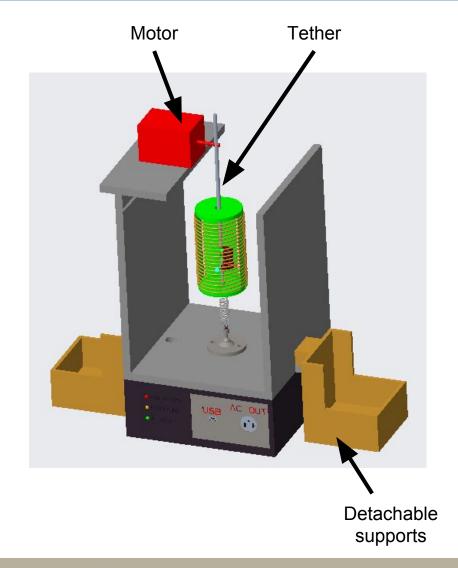
\$75

\$200


\$15

\$15

\$5


\$668

CAD Drawings

CAD Design Modifications

- 3-D Print Clips
 - Stabilize magnet motion
- Support for Solenoid
 - \circ $\,$ Housing for the springs
- Issues have been accounted for in the final design and purchasing.

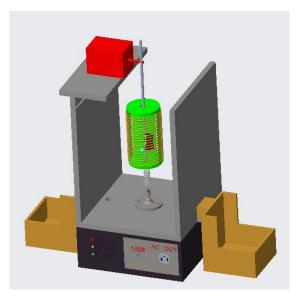
Presenter: Jared Gremley

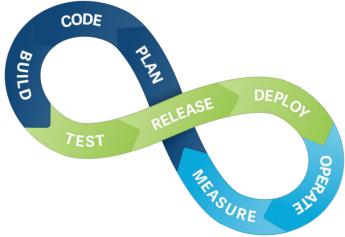
FAMU-FSU COLLEGE OF ENGINEERING MECHANICAL ENGINEERING

Libni Mariona Future Work

Prototype Construction

- Fabricate Solenoid
 - MAGLAB coil wrapper
 - Mr. Larson's mechanical shop
- Assemble Generator
 - Welding of housing
 - Linkage Connection
 - Motor Power Source
 - Motor Controller

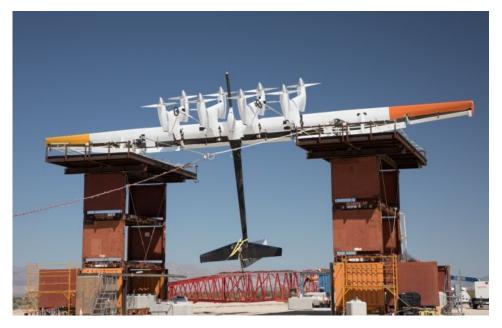

Presenter: Libni Mariona



FAMU-FSU COLLEGE OF ENGINEERING MECHANICAL ENGINEERING

Experimental Procedure and Testing

- Oscillate magnet at varying speeds
 - Measure and observe 6 data sets
 - 2 different motor rpms
 - 3 springs with different constants
- Real-time data measurements of electrical output
 - Voltage
 - Current
 - Resistance
- Compare and contrast datasets and MATLAB code
 - Adjust code to experiment if needed
- Repeat experiment to confirm results



Scalability

- Power output dependent on:
 - Kite size
 - Kite motion
 - Wire diameter
 - Coil wraps
 - Magnet speed

- Scale MATLAB code
 - 10 kW output gas generator
 - Disaster relief, campers, or boaters
 - Portable unit
 - 600 kW output Makani
 - Base load power on the grid

Future Work

Remaining Semester

- Finish prototype construction
- Test Prototype
- Validate Results
- Scale different applications:
 - Operating conditions
 - Best kite design
 - Optimal solenoid size
 - Manufacturability
 - Cost

Subsequent Work - Following Senior Design Team

For current prototype

- Optimize Kite Design
 - Maximize resultant force and kite motion
- Link magnet motion to kite motion
 - Reduce friction/drag
- Integrate electrical components to store charge
 - Change ± AC to +DC
- Increase overall system efficiency

For more accurate analysis

- Model kite in wind tunnel
- Model drag of tether
- Obtain instantaneous wind velocity profile

References

• Phipps, Jeffrey Sterling. Kite System for Generating Electricity. Phipps, assignee. Patent 9,013,055. 21 Apr. 2015. Print.

Questions? Comments?

