Design Review 4

Kite Generator

Team 16

Andrew Barba Jared Gremley Brian Lyn

Team Introduction

FAMU-FSU COLLEGE OF ENGINEERING MECHANICAL ENGINEERING

Andrew Barba Project Background

Project Recap

- Project Definition
 - Provide power to off-grid locations
 - Harness wind energy with portable system
 - Ensure ability to perform in varying wind conditions
- Jeff Phipps Patent
 - Kite based electricity generation system
 - Permanent magnet
 - Slides within housing wrapped in electric coil

Presenter: Andrew Barba

Concept Selection

Solenoid Generator vs. Transmission Generator

Solenoid Power Generator

Presenter: Andrew Barba

Rotational Spring

Concept Selection

Solenoid Generator vs. Transmission Generator

Transmission Power Generator

<u>Pros</u>

- Greater efficiency
- Proven concept

<u>Cons</u>

- Design a gearbox
- More mechanical components

Presenter: Andrew Barba

Concept Selection

- Concept Selection with Sponsor Jeff Phipps
 - Solenoid vs Transmission
 - Transmission models readily available
 - Kite design not necessary
 - Explore potential of solenoid power generator

- Redefined Project Scope:
 - Build and test a model to verify solenoid application
 - Research and analyze solenoid for varying power levels
 - Gas Generators
 - Makani

Presenter: Andrew Barba

Jared Gremley Power Generation

Power Generation

- Solenoids are complex in nature
 - Induced emf
 - Emf induced magnetic field opposes motion
 - Sinusoidal voltage and current with varying magnitudes
- Important variables of the solenoid
 - Number of wrappings and layers
 - Wire diameter
 - Length of solenoid
 - Magnet strength
 - Magnet velocity

- Model solenoid power generation with MATLAB
 - Measure voltage, current, & resistance through system
 - Maximize power output for varying diameters

Power Generation

- Solenoids are complex in nature
 - Induced emf
 - Emf induced magnetic field opposes motion
 - Sinusoidal voltage and current with varying magnitudes

- Number of wrappings and layers
- Wire diameter
- Length of solenoid
- Magnet strength
- Magnet velocity

- Model solenoid power generation with MATLAB
 - Measure voltage, current, & resistance through system
 - Maximize power output for varying diameters

Presenter: Jared Gremley

ΔB

Power Generation

- \circ $\,$ Model does not account for minor losses
- Improve model
 - Minor Kite Analysis

Aerodynamic Analysis

Boundary Conditions

- To fly a kite:
 - Lift must be greater than weight
 - Thrust must be greater than drag
 - Yields minimum velocity for flight
- Kite Movement
 - Kite will oscillate from varying winds
 - Magnet will translate similar to kite
 - Short tethers do not factor
 - Lift and Drag determine magnet velocity by work-energy theorem

Scalability

- The MATLAB code can be scaled to a desired power output
 - Gas Generator 10 kW output
 - Disaster relief emergency generator
 - Campers or boaters
 - Military combined generator and surveillance
 - Makani 600 kW output
 - Baseload power on the grid
 - Cheaper alternative
 - Portable unit
- Depending on the scale, various 'kite' subsystems may be required
 - Aerostat
 - Fixed wing airfoil

Brian Lyn Future Work

Future Work

- Obtain instantaneous wind velocity dataset
 - **National Weather Service** Ο
 - Data.Gov Ο
 - German Climate Computing Center Ο
 - Handheld anemometers Ο
- Match aerodynamic and power generation analysis in Matlab
- Size solenoid accordingly
- Purchase remaining parts

Wind Velocity Profile for Florida March 21, 2012

Presenter: Brian Lyn

Financial Considerations

- Solenoids are not on the market at the scale needed
 - Necessary to custom-build one
 - Scale must fit within budget
 - Size for previously purchased kites
- Obtained from previous year:
 - Dual tether kite
 - Magnet
- Remaining components are being sized and purchased:
 - \circ Spool
 - \circ Spring
 - \circ Motor
 - Shafts
 - \circ Bearings
 - Copper Wire

Presenter: Brian Lyn

Purchasing

Highest Priority Solenoid Production

Already own most items required to construct and experiment with solenoid power generation sanity check.

Presenter: Brian Lyn

Medium Priority Generator Prototype

The team is highly interested in developing a small scale model of the key systems a full blown product would entail, including a method for retracting the spool. Although the project has been called the kite generator project. The sponsor is currently only focused on the proof that a solenoid can produce power.

Lowest Priority

Mount Kite

FAMU-FSU COLLEGE OF ENGINEERING MECHANICAL ENGINEERING

Building and Testing

Experimental Analysis

- Motor to vary oscillations of magnet
 - Prove relationship of magnet speed and power
 - Measure voltage, current, and resistance
 - Determine efficiency of solenoid
- Compare experiment and computer model data
 - Remove any errors in code and experiment
- Repeat oscillating magnet experiment
 - Validate previous experiment results
 - Analyze tendencies in experiment and variables
- Apply results from experiment and model to analyze other power output levels

Presenter: Brian Lyn

References

- Phipps, Jeffrey Sterling. Kite System for Generating Electricity. Phipps, assignee. Patent 9,013,055. 21 Apr. 2015. Print.
- Wind Map. (n.d.). Retrieved February 27, 2018, from <u>http://hint.fm/wind/index.html</u>
- DKRZ long term archive. (n.d.). Retrieved February 27, 2018, from <u>https://cera-www.dkrz.de/WDCC/ui/cerasearch</u>
- Data.gov. (n.d.). Retrieved February 27, 2018, from https://www.data.gov/

Presenter: Brian Lyn

Questions? Comments?

FAMU-FSU COLLEGE OF ENGINEERING MECHANICAL ENGINEERING

Additional Slides

Copper Wire comes in a set range of diameters

Modeling our solenoid to fit within our initial metrics and targets of 50 lbs we produced this relationship

Mass = Volume * Density

Volume = Length*Area

Area = $3.14 r^{(2)}$

Additional Slides

- Work Energy Theorem
- Total Work = change in kinetic energy
- $Fdx = 0.5*m*dv^{(2)}$
- From an instaneous velocity data set we can find:
- the Force experienced on through the tether
- The change in position through kinematic equations
- And solve for the velocity of the magnet

Additional Slides

Cost Breakdown Without Electrical Components

- Gauge 0 Copper Wire 341' \$750
- Neodymium 6"x1" in cylindrical magnet \$225
- Sch 40 0.25" x 10' PVC Pipe \$3
- Approximate Cost \$1,000
- Remaining Budget \$1,000
 - Electrical Components and Housing
 - \circ Grounding
 - Battery
 - \circ Spring

