Virtual Design Review 2

Kite Generator

Team 16

Jared Gremley Brian Lyn Libni Mariona

Team Introduction

Andrew Barba Financial Advisor

Jared Gremley Team Leader

Brian Lyn Lead ECE

Libni Mariona Lead CAD

Simone Nazareth Lead ME

Presenter: Libni Mariona

Project Recap

- Project Summary
 - Provide power to off-grid locations.
 - Harness wind energy with portable system.
 - Ensure ability to perform in varying wind conditions.

- Utilize Jeff Phipps' Patent
 - Convert mechanical energy to usable energy.
 - Oscillating magnet inducing electro-motive force (emf).

Presenter: Libni Mariona

Project Recap

- Project Scope
 - Market for disaster relief and developing countries.
 - Catalog engineer an airfoil.
 - Airfoil sustains flight pattern.
 - Use off the shelf parts and available technology.
 - Ensure safe operation.
- Customer Needs
 - Airfoil takes off and lands on command.
 - Tether load is dispersed evenly along the wing.
 - Generate \geq 5 kW of power.

Presenter: Libni Mariona

Targets

- Essential design parameters
 - What contributes to power output?
 - Which parameter has the greatest effect?
- Benchmarking
 - Makani
 - Wind turbines
 - Sustainable power generation
- Physical models
 - Background research
 - Moving magnet inside inductor
 - EMF V [Volts]
 - Power U_b [Watts]
 - Magnetic field B [Telsa]

Presenter: Libni Mariona

Notable Equations:

$$I = \frac{BL}{\mu_0 N}$$

$$V = \frac{NBA}{\Delta t}$$

$$U_b = \frac{B^2 A L}{\mu_0 \Delta t}$$

Notable Targets

- Produce 10 kW of mechanical motion.
- Convert 50% of mechanical motion to electrical power.
- Generate \geq 5 kW of power.
- Weight \leq 200 lbm.
 - Each sub-section \leq 50 lbm.
- Cost ≤ \$2,000.
- Power to weight ratio \geq 25 W/lbm.

Presenter: Libni Mariona

Brian Lyn

Concept Generation Focus

Concept Generation Focus

Concept Generation Focus

Concept Generation Focus

Power Generation: Current Design

Presenter: Brian Lyn

Jared Gremley

Glider Delivery System

Functional Decomposition

- Kite/Glider System

- Take off and land autonomously.
- Oscillate flight based on environmental noise factors.
- Convey instantaneous wind speed and altitude of kite.

Presenter: Jared Gremley

Presenter: Jared Gremley

Presenter: Jared Gremley

Presenter: Jared Gremley

Presenter: Jared Gremley

Moving Forward - Concept Selection

- Decision Matrices:
 - House of quality
 - Pugh matrix
- Iterative analysis of parameters
 - Mathematical models
 - o Experimental testing
- Advisor assistance
 - o Extensive knowledge of field

Presenter: Jared Gremley

Moving Forward - Reverse Engineering

- Experimentation on the solenoid:
 - Determine why previous design didn't produce sufficient power.
 - \circ Variables:
 - Number of magnets
 - Thickness of wire
 - Number of loops in solenoid
 - Length of solenoid

Presenter: Jared Gremley

References

- Phipps, Jeffrey Sterling. Kite System for Generating Electricity. Phipps, assignee. Patent 9,013,055. 21 Apr. 2015. Print.
- "Makani Kites: Airborne Wind Energy." *Makani,* Google, x.company/makani/.
- 9, Team. "Final Presentation." *eng.famu.fsu.edu,* 17 Apr. 2017, www.eng.famu.fsu.edu/me/senior_design/2017/team09
- "Unmanned Tilt-Rotor Aircraft fo Multi-Mission Application." *Digitech,* Florida State University, https://digitech.fsu.edu/x/2016/400
- "Design, The Process of Innovation." https://.behance.net/gallery

Comments or Questions?

Backup Slides

Circuit Analysis

Faradays Law: Voltage Generated V = -NBA/_At

Backup Slides

Force Analysis

Backup Slides

Force Analysis

