NORTHROP GRUMMAN

Drone Disabling Device

Design Review 4

Latarence Butts Deshon Purvis Natalie Villar Justin Wawrzyniak

Team Introduction

Latarence Butts Lead Electrical Engineer

Brandon Eiler Lead Computer Engineer

Deshon Purvis Mechanical Engineer and Scribe

Jordan Lane-Palmer Lead Mechanical Engineer

Gregory Boldt Webmaster

Natalie Villar Financial Advisor and Scribe

Justin Wawrzyniak Project Manager

Project Description

Deshon Purvis TEAM 13

Project Scope

Objective

Develop a device to secure specified air space from unmanned flight vehicles.

Problem

Drones with cameras and possible explosives (IEDs) pose a security threat to the public and military safety.

Deshon Purvis TEAM 13

Customer Needs

Drone Specs

Typical household drones

Effectiveness

- Minimum Requirement: disable
- Bonus: recovery

Range

• 30 feet radius hemisphere

Figure 1: DJI Mavic Pro Quadcopter 4k Drone [1]

Figure 2: Visual representation of desired dome [2]

Deshon Purvis TEAM 13

Customer Needs

Operation

• Trained human operator

Power

- AC Power
- 120 Volts

Portability

- Portable
- 4 hour assembly time

Figure 3: Visual representation of sample user operation [3]

Figure 4: Simple wall plug and outlet [4]

Deshon Purvis TEAM 13

Target Catalog

Quantitative Target Values

METRIC	TARGET	UNITS		
Time to assemble device	4	h		
Device current	15-20	А		
Device voltage	120	V		
Range of device (dome)	30	ft		
Time to find/lock on to target	30	S		
Time to neutralize drone	5	S		
Probability of takedown	90	%		
Time to disassemble device	4	h		
Project cost	5000	USD		

Deshon Purvis TEAM 13

Selected Design

Natalie Villar TEAM 13

Concept Selection

Villar TEAM 13

Detection System

Video

- An array of video cameras will be used to gain 360 field of view
- Open source object recognition
 application to process video
- Provides general location of detected drone to user

Figure 5: video detection of a drone and bird [5].

Update

- Awaiting arrival of purchased camera
- Testing open source software for drone recognition

Figure 6: SJCAM SJ4000 Action Camera [6].

Latarence Butts TEAM 13

Neutralization System

Radio Frequency Interference

- Jam 2.4GHz radio frequency band.
- Four channels needed.
- Disrupt controller ↔ drone communication

Sound (Pressure) Wave Attack

- Sound emitted from long range acoustic device (LRAD) at resonant frequency of the gyroscope or accelerometer.
- Multiplying effect
- Causing false orientation readings being sent to flight controller.

Figure 7: four channels of 2.4GHz band [7].

Figure 8: gyroscope schematic [8].

Latarence Butts TEAM 13

Update

Sound Update

- Solution was determined to be infeasible through testing
- Testing occurred at night due to ear irritation
- Brief testing will be conducted on future drones

Figure 9: tethered drone for testing.

Figure 10: motor reading on oscilloscope.

Latarence Butts TEAM 13

Update

Expected

Latarence Butts TEAM 13

Neutralization System

Weighted Net Attack

Use compressed air to launch a weighted net at drone.

Justin Wawrzyniak TEAM 13

Justin Wawrzyniak TEAM 13

Up Next

- Test launcher
- Begin purchasing support and angle control parts
- Determine how to allow for manual aiming

Figure 12: *illustration of weighted net attack.*

Justin Wawrzyniak TEAM 13

Figure 13: illustration of weighted net attack.

Deshon Purvis TEAM 13

Determine Compressor Specs

No Air Resistance

No Pressure Loss From Compressor

Future Activities

Natalie Villar TEAM 13

Project Plan

Purchasing Update

Detection

Camera

Control

Tripod (i.e. speaker stand)

Neutralization

- Transmitters RF attack
- Various parts Weighted Net attack

Figure 15: shows a similar transmitter purchased for testing [9].

Natalie Villar **TEAM 13**

Figure 14: shows the camera purchased for testing [6].

Next Steps

Complete small scale testing for RF attack

Continue testing algorithm for drone detection

Begin building prototype

Natalie Villar TEAM 13

References

- 1. Argos (Photographer). (2017). *DJI Mavic Pro Quadcopter 4k Drone* [digital image]. Retrieved from <u>http://www.argos.co.uk/product/6259381</u>
- 2. Y. (2011, November 01). *Clipart geodesic-dome* [digital image]. Retrieved October 13, 2017, from <u>https://openclipart.org/detail/165554/geodesicdome</u>
- 3. ROCU-7 Universal Wireless Controller for Unmanned Military Systems (2017). [digital image]. Retrieved October 13, 2017, from <u>http://www.robo-team.com/products/rocu-7/</u>
- 4. M. (2014, September 04). Kerbal Attachment System (KAS) 0.4.7 -- Pipes as fuel lines and even fewer explosions! [digital image] Retrieved October 13, 2017, from<u>https://forum.kerbalspaceprogram.com/index.php?/topic/48738-kerbal-attachment-system-kas-047-pipes-as-fuel-lines-and-even-fewer-explosions/&page=6</u>
- 5. Akpan, N. (2015, August 13). The heart rates of black bears spike when drones fly overhead. Retrieved November 07, 2017.
- 6. A., R., B, R., Marv, M., P., C., . . . D. (2016, March 25). SJ4000 Action Camera (Black). Retrieved February 21, 2018, from <u>https://www.bhphotovideo.com/c/product/1072775-</u> <u>REG/sj4000_sj4000_action_camera.html</u>
- 7. MNS Laboratory. (2016, June 29). DronePD Drone Police Department project [System Overview]. Retrieved November 3, 2017.
- 8. S. (2017, May 21). Radar Principle. Retrieved November 07, 2017.
- 9. 2. (1970, February 01). 2.4 GHz Wireless FM Audio Video Transmitting Module A/V Transmitter For DVD DVB. Retrieved February 21, 2018.

Questions?

Matlab Code for Compressor Spec

4	%% Bernoulli's Equation		
5-	g = 32.174;	196	acceleration due to gravity in ft/s^2
6	% Entrance conditions		
7-	P1 = 150 * 144;	8	pressure in 1bf/ft^2
8 -	rho1 = 0.687;	\$	lbf/ft^3 air density 0 P1 0 70F
9-	A1 = (pi*(0.364/2)^2)/144;	8	cross section area at compressor in ft^2
10-	h1 = 1.5;	8	height of compressor outlet
11	% Exit conditions		
12 -	P2 = 14.7 * 144;	8	pressure in lbf/ft^2
13-	rho2 = 0.075;	8	lbf/ft^3 air density @ P2 @ 70F
14-	A2 = 4 * A1;	8	cross section area at exit in in^2
15-	h2 = 4;	8	average height of exit tubes
16	% Plug mass continuity eqn into	B	ernoulli's and rearrange to solve for V2
17-	V2 = sqrt((2*(P2/rho2-P1/rho1+g	* ()	h2-h1)))/((rho2*A2/(rho1*A1))^2-1))
10			

Matlab Code for Compressor Spec

```
18
19
      %% Projectile Motion
     Theta = 10;
20 -
                            % lanch angle of projectile in degrees
     V0 = V2;
21 -
                            % initial velocity in ft/s
22-
                            % x component
     V0x = V0*cosd(Theta);
23 -
     V0y = V0*sind(Theta); % y component
     x(1) = 0;
24 -
                            % initial horizontal position in ft
     y(1) = 4;
25 -
                            % initial vertical position in ft
26
     % variables for while loop
     t = 0;
27 - 
                            % time
28 -
     i = 1;
                            % counter variable
29-
     dt = 0.01;
                     % change in time
     % build array of x and y positions over time
30
31 -
    \square while min(y)> -0.01;
32-
        t = t+dt;
33-
    i = i+1;
      % projectile motion equations for position
34
     x(i) = x(1) + V0x*t;
35 -
        v(i) = v(1) + V0v*t - 0.5*a*t^{2};
36-
37
38 -
      end;
39-
      t
                                 % time to hit ground
40 -
     R = V0x*t
                                 % max range
41-
     h = y(1) + V0y^2/(2*g)
                                 % max height
     % plots the Projectile Motion
42
     plot(x,y);
43 -
     axis([0 110 0 10]);
44-
45 -
     xlabel('Horizontal Distance (Ft)');
     ylabel('Vertical Distance (Ft)');
46-
47 -
     title('Projectile Motion Path');
```


Supporting Data

Rocking Drones with Intentional Sound Noise on Gyroscopic Sensors

Korea Advanced Institute of Science and Technology

Figure 6: Sound noise effect on L3G4200D gyroscopes (all samples were collected as raw data stored in the gyroscope's register)

Supporting Data

Rocking Drones with Intentional Sound Noise on Gyroscopic Sensors

Korea Advanced Institute of Science and Technology

(a) Raw data samples of one L3GD20 chip with a single-tone sound noise at 20,100Hz

⁽b) Raw data samples of one MPU6000 chip with a single-tone sound noise at 26,800Hz

 Item
 Target

 Drone A
 Drone A

 Resonant Freq.
 8,200 Hz

 (Gyroscope)
 (L3G4200D)

 SPL at Resonant Freq.
 97 dB

 Affected Axes
 X, Y, Z

 Attack Result
 Fall down

(a) Raw data samples of the gyroscope Region A Region B Region C 200 400 800 800 1000 3200 340 200 400 900 800 1000 3200 340 200 400 900 800 1000 3200 340

(c) Rotor control data samples (from the flight control software)

Supporting Data

Waging Doubt on the Integrity of MEMS Accelerometers with Acoustic Injection Attacks

University of Michigan

TABLE 1. ACCELEROMETER RESONANT FREQUENCIES: UNDER RESONANT ACOUSTIC INTERFERENCE, AN OUTPUT BIASING ATTACK CLASS INDICATES A SENSOR'S FALSIFIED MEASUREMENTS FLUCTUATE (INSECURE LPF) WHILE AN OUTPUT CONTROL ATTACK CLASS INDICATES CONSTANT FALSIFIED MEASUREMENTS ARE OBSERVED (INSECURE AMPLIFIER). TWO INSTANCES OF EACH SENSOR WERE TESTED.

Model	Туре	Typical Usage	Resonant Frequency (kHz)			Amplitude (a)+	Attack Class‡		
Model			X	Y	Z	Amphilude (g)*	X	Y	Z
Bosch - BMA222E	Digital	Mobile devices, Fitness	5.1-5.35	-	9.4-9.7	1	В	-	BC
STM - MIS2DH	Digital	Pacemakers, Neurostims	-	-	8.7-10.7	1	-	-	BC
STM - IIS2DH	Digital	Anti-theft, Industrial	-	-	8.4-10.8,	1.2	-	-	BC
STM - LIS3DSH	Digital	Gaming, Fitness	4.4-5.2	4.4-5.6	9.8-10.2	1.6	BC	BC	BC
STM - LIS344ALH	Analog	Antitheft, Gaming	2.2-6.6	2.2-5.7	2.2-5.6	0.6	В	В	B
STM - H3LIS331DL	Digital	Shock detection	-	-	11-13,	5.2	-	-	BC
INVN - MPU6050	Digital	Mobile devices, Fitness	5.35	-	-	0.75	BC	-	-
INVN - MPU6500	Digital	Mobile devices, Fitness	5.1, 20.3	5.1-5.3	-	1.9	BC	С	-
INVN - ICM20601	Digital	Mobile devices, Fitness	3.8,	3.3,	3.6,	1.1	BC	BC	BC
ADI - ADXL312	Digital	Car Alarm, Hill Start Aid	3.2-5.4	2.95-4.75	9.5-10.1	1.3	В	В	BC
ADI - ADXL337	Analog	Fitness, HDDs	2.85-3.1	3.8-4.4	-	0.8	B	В	-
ADI - ADXL345	Digital	Defense, Aerospace	4.4-5.4	3.1-6.8	4.4-4.7	7.9	BC	BC	B
ADI - ADXL346	Digital	Medical, HDDs	4.3-5.1	6.1	4.95,	1.75	В	В	B
ADI - ADXL350	Digital	Mobile devices, Medical	2.5-6.3	2.5-4	2.5-6.8	1.8	В	В	B
ADI - ADXL362	Digital	Hearing Aids	4.2-6.5,	4.3-6.5,	4.5-6.5	1.4	BC	BC	BC
Murata - SCA610	Analog	Automotive	-	-	-	-	-	1	-
Murata - SCA820	Digital	Automotive	24.3	-	-	0.13	С	-	-
Murata - SCA1000	Digital	Automotive	-	-	-	-	-	-	-
Murata - SCA2100	Digital	Automotive	-	-	-	-	-	-	-
Murata - SCA3100	Digital	Automotive	7.95	-	8	0.15	C	-	С

* Amplitude is taken as the maximum false output measurement observed.

[‡] B = Output Biasing Attack; C = Output Control Attack (Red Highlight)

STM = ST Microelectronics; ADI = Analog Devices; INVN = InvenSense

- Experiments found no resonance

... Additional ranges of resonance elided

