NORTHROP GRUMMAN

Drone Disabling Device

Virtual Design Review 2

Gregory Boldt Latarence Butts Brandon Eiler Deshon Purvis

TEAM 13

Team Introduction

Latarence Butts Lead Electrical Engineer

Gregory Boldt Lead Mechanical Engineer

Brandon Eiler Lead Computer Engineer and Webmaster

Jordan Lane-Palmer Lead Mechanical Engineer

Deshon Purvis Webmaster and Scribe

Natalie Villar Financial Advisor and Scribe

Justin Wawrzyniak Project Manager

Project Scope

Objective

• Develop a device to secure specified air space from unmanned flight vehicles.

Key Goals

- <u>Neutralize</u> unmanned flight vehicles within a specified air space
- Ensure the device is <u>portable</u>
- Maintain <u>environmental safety</u>
- <u>Function properly</u> over necessary time period
- Comply with safety and legal <u>regulations</u>

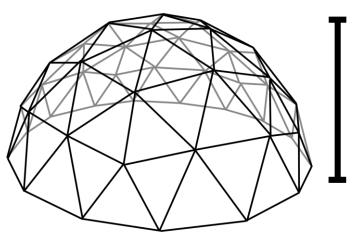
Brandon Eiler TEAM 13

Customer Needs

Drone Specs

Typical household drones

Effectiveness


- Minimum Requirement: disable
- Bonus: recovery

Range

30 feet radius dome

Figure 1: DJI Mavic Pro Quadcopter 4k Drone [14]

30 ft

Figure 2: Visual representation of desired dome [15]

Brandon Eiler TEAM 13

Customer Needs

Operation

Trained human operator

Power

- AC Power
- 15-20 amps

Portability

- Portable
- 4 hour assembly time

Purpose

Focus on development process

Figure 3: Visual representation of sample user operation [16]

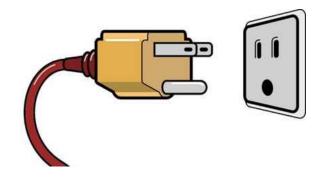


Figure 4: Simple wall plug and outlet [17]

Brandon Eiler TEAM 13

Target Catalog

Target Catalog

Quantitative Target Values

METRIC	TARGET	UNITS
Time to assemble device	4	h
Device current	15-20	А
Device voltage	120	V
Range of device (dome)	30	ft
Time to find/lock on to target	30	S
Time to neutralize drone	5	S
Probability of hit	90	%
Probability of takedown	90	%
Time to disassemble device	4	h
Project cost	5000	USD

Yes/No Targets

METRIC	YES NO
Power up device	\checkmark
Identify drone	\checkmark
Lock on to drone	\checkmark
Neutralize drone	\checkmark
Repeatable	\checkmark
Power down device	\checkmark
Portable	\checkmark
Minimal damage to drone	\checkmark
Safe for environment	\checkmark

Greg Boldt TEAM 13

Detection		Radio Frequency (RF) Radar Operator
Control	ManualRemoteAutomated	
Neutralization	 RF Interference Sound Attack EMP	 Hacking Attack Weighted Net Projectile Attack

Greg Boldt TEAM 13

Detection System

Latarence Butts TEAM 13

Detection System

Video

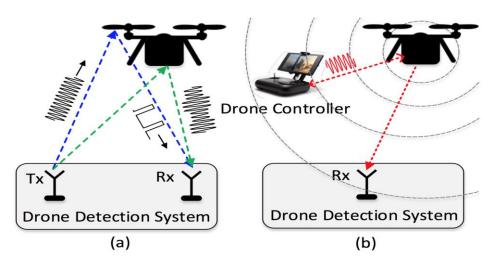
- Video camera with software to identify moving objects on the feed.
- Low-Medium cost.
- Range depends on camera resolution.
- Video camera can also be used for aiming the neutralizing solution.

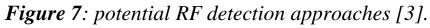
Thermal

- Similar to video detection.
- Smaller drone with camera may not give off large heat signature.
- Drone carrying payload (IED) would easily be detected.
- Medium cost.

Figure 5: video detection of a drone and bird [1].

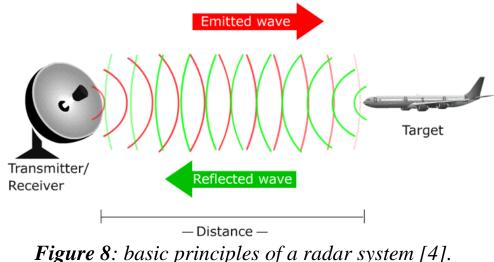
Figure 6: drone detected on thermal imaging [2].


Latarence Butts TEAM 13



Detection System

Radio Frequency (RF)


- Transmitter and receiver to detect drone not sending out RF signals.
- Receiver can identify location of controller and drones that send signals to controller (video feed).
- High range.
- High cost.

Radar

- Possible to alter an existing radar product to detect smaller devices.
- Medium range.
- High cost.

Latarence Butts TEAM 13

Detection System

Audio

- Requires use of machine learning to distinguish drone sounds.
- Low cost.
- Low range.
- Not effective in busy urban areas.

Operator

- Depend on eyesight and hearing of device operator to detect drone.
- Range depends on operator.
- Eliminates cost of a detection product.
- Eliminates complexity of developing a detection system.

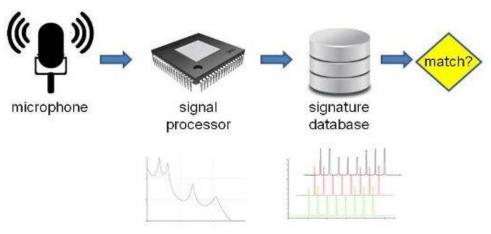


Figure 9: audio detection system basic principles [5].

Figure 10: device operator detecting drone [6].

Latarence Butts TEAM 13

Control System

Greg Boldt TEAM 13

Control System

Manual Control

- Rotated and aimed by operator
- Device could operate similar to a gun
- Device could be placed on a tripod or stand

Remote Control

- Device equipped with a video camera
- Operator uses video feed to aim device
- Remote will control all functions of the device

Automated Control

- Device detects and tracts drone
- Device has both automated and operator controlled attack protocols

Greg Boldt TEAM 13

Neutralization System

Deshon Purvis TEAM 13

Weighted Net Attack

- 2 DOF mechanism with mounted CO2 cannon
- CO2 cannon houses projectile [11].
- Projectile houses weighted net.
- Net deploys from projectile at a specific time due to proximity of target.

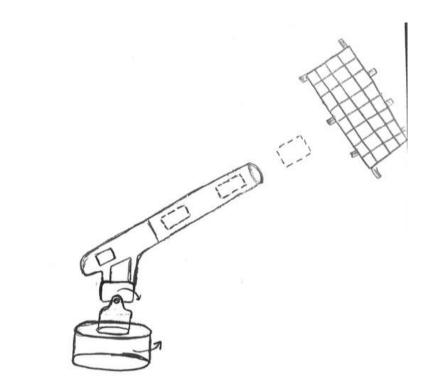
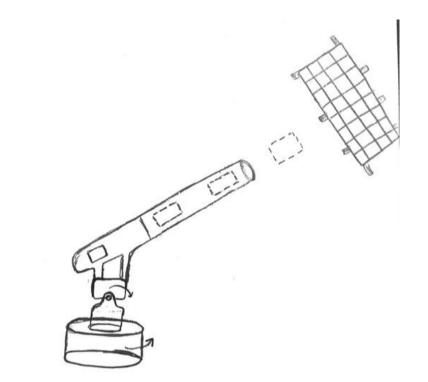


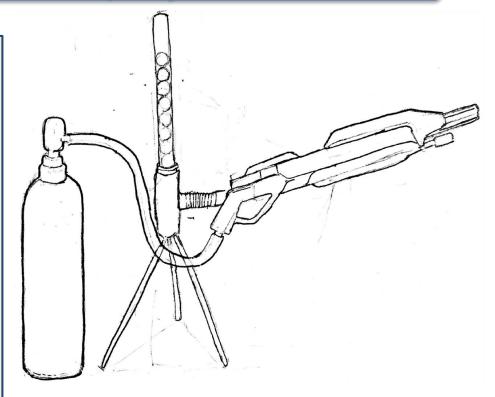
Figure 11: illustration of weighted net attack.

Deshon Purvis TEAM 13

Weighted Net Attack

- Large surface area covered
- Accuracy considering a stationary target
- Neutralization of multiple drones
- Complex timing net deployment
- High speed drones



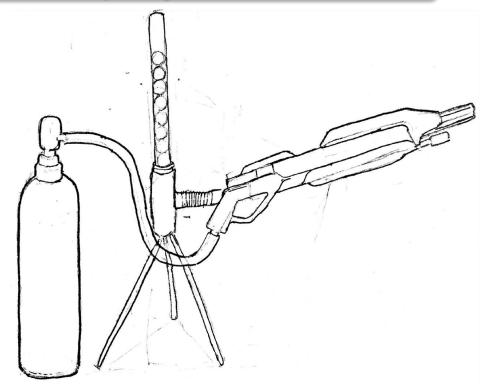

Figure 11: illustration of weighted net attack.

Deshon Purvis TEAM 13

Projectile Attack with Epoxy Ammo

- Soft-shelled capsules [12].
- Contains epoxy foam mixture [13].
 - Free radical peroxide initiator.
 - Polymethyl methacrylate.
 - Epoxy vinyl.
- Foam expansion inhibits drone functionality.

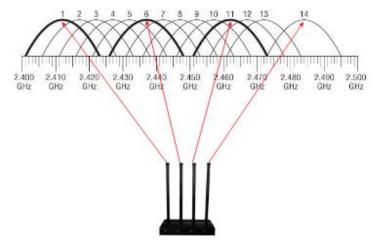
Figure 12: *illustration of epoxy based ammo attack.*


Deshon Purvis TEAM 13

Projectile Attack with Epoxy Ammo

- Simplicity of operation
- Complete neutralization
 of drone

- Complexity of ammunition development
- Environmental hazard
- Tracking drone would be difficult to implement


Figure 12: *illustration of epoxy based ammo attack.*

Deshon Purvis TEAM 13

Radio Frequency Interference

- Jam 2.4GHz radio frequency band.
- Four channels needed.
- Disrupt controller ↔ drone communication.

Sound (Pressure) Wave Attack

- Sound emitted from long range acoustic device (LRAD) at resonant frequency of the gyroscope or accelerometer.
- Multiplying effect.
- Causing false orientation readings being sent to flight controller.

Figure 13: four channels of 2.4GHz band [7].

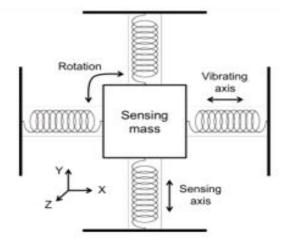


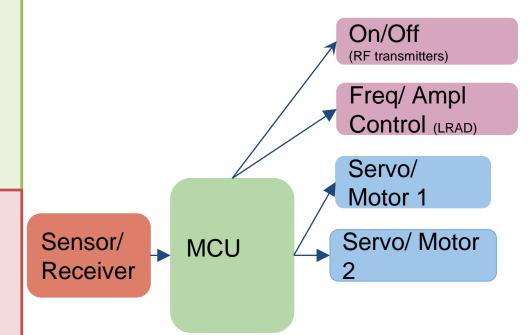
Figure 14: gyroscope schematic [8].

Latarence Butts TEAM 13

Radio Frequency + Sound Wave Attack

- Limited precision needed
- Quickly effective
- No ammunition needed
- Effective against preprogrammed flight

Sound:


Latarence

TEAM 13

Butts

- May take a while to find resonant frequency
- May not be able to find resonant frequency
- Pricy (LRAD)

Figure 15: *functional schematic of RF* + *sound attack*.

Electromagnetic Pulse (EMP) Attack

- EMP causes current-surge in flight critical component.
- Generate a high power burst of electrons focused by an antenna.
- Possible affected components:
 - 1) MCU
 - 2) Integrated circuit chips
 - 3) RF module
 - 4) Power circuit

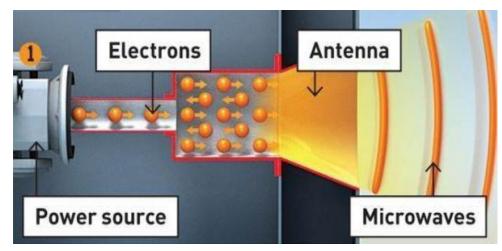


Figure 16: EMP schematic [9].

Brandon Eiler TEAM 13

Electromagnetic Pulse (EMP) Attack

- Effective against preprogrammed flight
- High probability of hitting target
- Permanent disabling solution
- Must adhere to FCC regulations
- High power requirement
- Expensive
- Unlikely to generate strong enough pulse

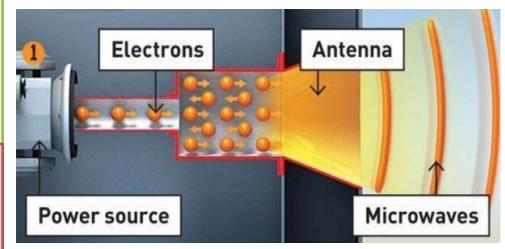
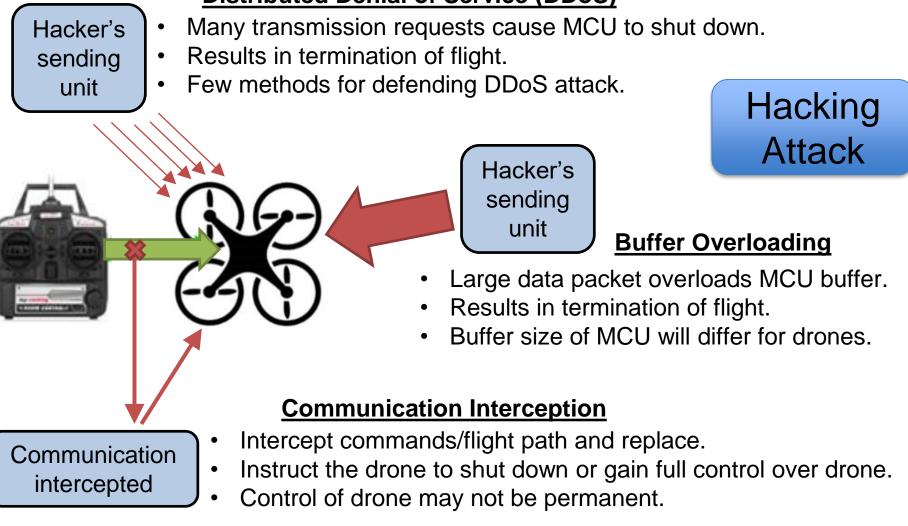


Figure 16: EMP schematic [9].

Hacking Attack

- Exploit vulnerabilities in:
 - 1. Software
 - 2. Microcontrollers
 - 3. Communication protocols
- Methods:
 - 1. Communication interception [10]
 - 2. Distributed Denial of Service (DDoS) [10]
 - 3. Buffer overloading [10]


• Design cost low

- Possibility for control of drone
- Limited collateral damage
- Expense of drones for testing to find vulnerabilities
- May take too long to hack
- Hack may be specific to drone model

Brandon Eiler TEAM 13

Distributed Denial of Service (DDoS)

Sample Selection Criteria

RANK	CATEGORY	NET	EPOXY	RF	SOUND	EMP	HACKING
	Effectiveness						
	Range						
	Public Safety						
	Environmental Safety						
	Cost						
	Ease of Operation						
	Complexity						
	Portability						

Brandon Eiler TEAM 13

Next Steps

Produce similar selection criteria for detection and control systems

Explore combination of neutralization systems

Small scale testing

Brandon Eiler TEAM 13

References

- 1. Akpan, N. (2015, August 13). The heart rates of black bears spike when drones fly overhead. Retrieved November 07, 2017.
- 2. Surveillance-Video. (2017). Veilux VB-70IRC80L650D Bullet Camera. Retrieved November 03, 2017.
- 3. MNS Laboratory. (2016, June 29). DronePD Drone Police Department project [System Overview]. Retrieved November 3, 2017.
- 4. S. (2017, May 21). Radar Principle. Retrieved November 07, 2017.
- 5. CNXSoft Embedded Systems News. (n.d.). Retrieved November 07, 2017.
- 6. Home Index. (n.d.). Retrieved November 07, 2017, from https://www.droneshield.com/
- 7. Coleman, D. (2012, July 11). WiFi Back to the Basics | 2.4GHz Channel Planning. Retrieved November 07, 2017.
- 8. Son, Yunmok, and Hocheol Shin. "Rocking Drones with Intentional Sound Noise on Gyroscopic Sensors." Usenix Advanced Computing Systems, 12 Aug. 2015.
- 9. Voute, Christopher, et al. "Making Electromagnetic Weapons: Directed Microwave Energy." WonderHowTo, WonderHowTo, 9 Feb. 2012.
- 10. Sneiderman, P. (2016, June 08). Here's how easy it is to hack a drone and crash it. Retrieved November 02, 2017.
- 11. Birch, G. C., Griffin, J. C., & Erdman, M. K. (2015). UAS Detection Classification and Neutralization: Market Survey 2015. Sandia National Laboratories. doi: 10.2172/1222445
- 12. Harris, T.(2001, May). How Paintball Works. Retrieved November 03, 2017.
- 13. Dailey, M., Silva, A., McIntire, P., Wilson, G., Moore, J., & White, S. (2014, September) A self-healing biomaterial based on free-radical polymerization. Retrieved November 03, 2017.
- 14. Argos (Photographer). (2017). DJI Mavic Pro Quadcopter 4k Drone [digital image]. Retrieved from http://www.argos.co.uk/product/6259381
- 15. Y. (2011, November 01). *Clipart geodesic-dome* [digital image]. Retrieved October 13, 2017, from https://openclipart.org/detail/165554/geodesicdome
- 16. ROCU-7 Universal Wireless Controller for Unmanned Military Systems (2017). [digital image]. Retrieved October 13, 2017, from http://www.robo-team.com/products/rocu-7/
- 17. M. (2014, September 04). *Kerbal Attachment System (KAS) 0.4.7 –- Pipes as fuel lines and even fewer explosions!* [digital image] Retrieved October 13, 2017, from<u>https://forum.kerbalspaceprogram.com/index.php?/topic/48738-kerbal-attachment-system-kas-047-pipes-as-fuel-lines-and-even-fewer-explosions/&page=6</u>

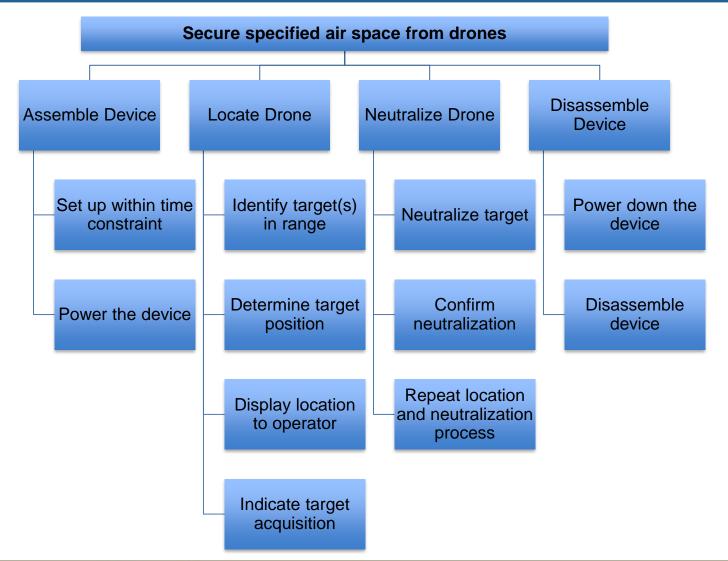
Back Up Slides TOPICS OF SLIDES

FAMU-FSU COLLEGE OF ENGINEERING DEPARTMENTS OF M.E. & E.C.E.

TEAM 13

Customer Needs

Question?	Customer Statement	Interpreted Need		
What is the size and type of drone to be neutralized?	Recreational drones that could be carrying IED's or have cameras.	Disable non-military, typical household drones.		
How long does this deviceThe device should work asneed to be operable for?long as possible. It can beplugged into a car, building, generator, etc.		AC power with 15-20 amp power consumption (typical outlet)		
What is the outcome of the neutralized drone?	Constraints but if possible			



Customer Needs

Question?	Customer Statement	Interpreted Need			
Is the device expected to be autonomous?	No, due to time constraints it will most likely not be possible but ideally that's what we would want.	The threshold or minimum requirement is that the device provides user operation.			
Is there a specific range that the device must function within? 30ft radius dome around device; may realize this possible and constraints need to be adjusted.		30ft radius dome minimum but operate at longer range if possible.			
Does the device need to be portable?	Yes, be able to assemble device within 4 hours.	Portable device with a quick set-up time.			
What is the purpose of Northrop Grumman sponsoring this project?	Aid-to-hire and give students an understanding of the learning process. Northrop Grumman is not looking for a proof of concept to scale.	Our team should focus on the development process over delivering the final product.			

Functional Decomposition

Supporting Data

Rocking Drones with Intentional Sound Noise on Gyroscopic Sensors

Korea Advanced Institute of Science and Technology

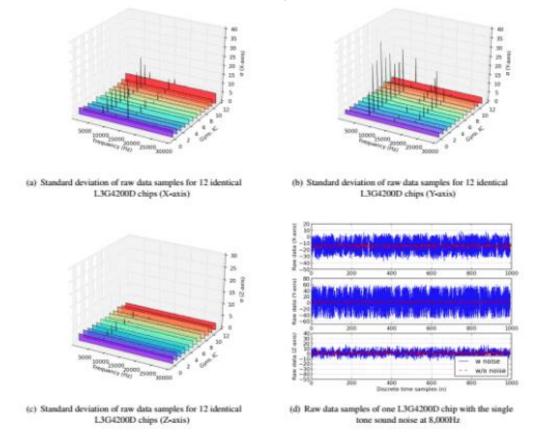


Figure 6: Sound noise effect on L3G4200D gyroscopes (all samples were collected as raw data stored in the gyroscope's register)

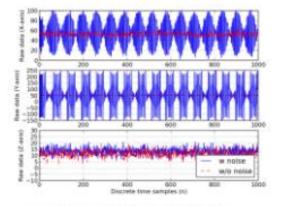
FAMU-FSU COLLEGE OF ENGINEERING MECHANICAL ENGINEERING

Supporting Data

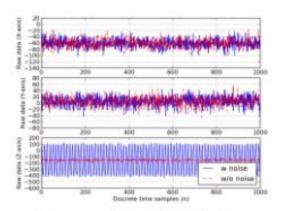
Item

Resonant Freq.

(Gyroscope)


SPL at Resonant

Freq.


Affected Axes Attack Result

Rocking Drones with Intentional Sound Noise on Gyroscopic Sensors

Korea Advanced Institute of Science and Technology

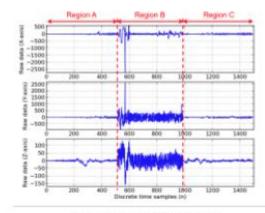
(a) Raw data samples of one L3GD20 chip with a single-tone sound noise at 20,100Hz

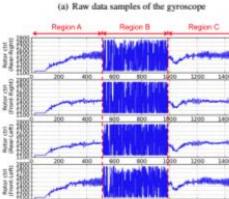
⁽b) Raw data samples of one MPU6000 chip with a single-tone sound noise at 26,800Hz

And the second interviewed the second intervi

Target

Drone A


8,200 Hz


(L3G4200D

97 dB

X, Y, Z

Fall down

Churnet time samples (r) (c) Rotor control data samples (from the flight control software)

FAMU-FSU COLLEGE OF ENGINEERING MECHANICAL ENGINEERING

Supporting Data

Waging Doubt on the Integrity of MEMS Accelerometers with Acoustic Injection Attacks

University of Michigan

TABLE 1. ACCELEROMETER RESONANT FREQUENCIES: UNDER RESONANT ACOUSTIC INTERFERENCE, AN OUTPUT BIASING ATTACK CLASS INDICATES A SENSOR'S FALSIFIED MEASUREMENTS FLUCTUATE (INSECURE LPF) WHILE AN OUTPUT CONTROL ATTACK CLASS INDICATES CONSTANT FALSIFIED MEASUREMENTS ARE OBSERVED (INSECURE AMPLIFIER). TWO INSTANCES OF EACH SENSOR WERE TESTED.

Model	Tune	Typical Usage	Resonant Frequency (kHz)		Amplitude (g)*	Attack Class‡			
Model	Туре	Typical Usage	X	Y	Z	Ampittude (g)*	X	Y	Z
Bosch - BMA222E	Digital	Mobile devices, Fitness	5.1-5.35	-	9.4-9.7	1	B	-	BC
STM - MIS2DH	Digital	Pacemakers, Neurostims	-	-	8.7-10.7	1	-	-	BC
STM - IIS2DH	Digital	Anti-theft, Industrial	-	-	8.4-10.8,	1.2	-	-	BC
STM - LIS3DSH	Digital	Gaming, Fitness	4.4-5.2	4.4-5.6	9.8-10.2	1.6	BC	BC	BC
STM - LIS344ALH	Analog	Antitheft, Gaming	2.2-6.6	2.2-5.7	2.2-5.6	0.6	B	B	B
STM - H3LIS331DL	Digital	Shock detection	-	-	11-13,	5.2	-	-	BC
INVN - MPU6050	Digital	Mobile devices, Fitness	5.35	-	-	0.75	BC	-	-
INVN - MPU6500	Digital	Mobile devices, Fitness	5.1, 20.3	5.1-5.3	-	1.9	BC	C	-
INVN - ICM20601	Digital	Mobile devices, Fitness	3.8,	3.3,	3.6,	1.1	BC	BC	BC
ADI - ADXL312	Digital	Car Alarm, Hill Start Aid	3.2-5.4	2.95-4.75	9.5-10.1	1.3	B	B	BC
ADI - ADXL337	Analog	Fitness, HDDs	2.85-3.1	3.8-4.4	-	0.8	B	B	-
ADI - ADXL345	Digital	Defense, Aerospace	4.4-5.4	3.1-6.8	4.4-4.7	7.9	BC	BC	B
ADI - ADXL346	Digital	Medical, HDDs	4.3-5.1	6.1	4.95,	1.75	В	B	B
ADI - ADXL350	Digital	Mobile devices, Medical	2.5-6.3	2.5-4	2.5-6.8	1.8	B	B	B
ADI - ADXL362	Digital	Hearing Aids	4.2-6.5,	4.3-6.5,	4.5-6.5	1.4	BC	BC	BC
Murata - SCA610	Analog	Automotive	-	-	-	-	-	-	-
Murata - SCA820	Digital	Automotive	24.3	-	-	0.13	C	-	-
Murata - SCA1000	Digital	Automotive	-	-	-	-	-	-	-
Murata - SCA2100	Digital	Automotive	-	-	-	-	-	-	-
Murata - SCA3100	Digital	Automotive	7.95	-	8	0.15	C	-	С

* Amplitude is taken as the maximum false output measurement observed.

[‡] B = Output Biasing Attack; C = Output Control Attack (Red Highlight)

STM = ST Microelectronics; ADI = Analog Devices; INVN = InvenSense

- Experiments found no resonance

... Additional ranges of resonance elided

