NORTHROP GRUMMAN

Drone Disabling Device

Virtual Design Review 1

Brandon Eiler Jordan Lane-Palmer Natalie Villar Justin Wawrzyniak

FAMU-FSU COLLEGE OF ENGINEERING DEPARTMENTS OF M.E. & E.C.E.

TEAM 13

Team Introduction

Latarence Butts Lead Electrical Engineer

Gregory Boldt Lead Mechanical Engineer

Brandon Eiler Lead Computer Engineer and Webmaster

Jordan Lane-Palmer Lead Mechanical Engineer

Deshon Purvis Webmaster and Scribe

Natalie Villar Financial Advisor and Scribe

Justin Wawrzyniak Project Manager

Northrop Grumman

Leading global security company providing solutions to government and commercial customers.

Involvement:

- ➤ Innovative systems
- > Undersea technologies
- ➤ Outer space technologies
- Cyberspace technologies

Project Overview

Develop a device that neutralizes drones.

Potential methods:

- ➤ Signal based attack
 - Wi-Fi attack
 - Signal jamming
 - Directed EMP
 - Sensor spoof
- Physical attack
 - Weighted Net

Figure 1: DJI Mavic Pro Quadcopter 4k Drone [1]

Project Scope

Objective

• Develop a device to secure specified air space from unmanned flight vehicles.

Key Goals

- <u>Neutralize</u> unmanned flight vehicles within a specified air space
- Ensure the device is <u>portable</u>
- Maintain <u>environmental safety</u>
- <u>Function properly</u> over necessary time period
- Comply with safety and legal <u>regulations</u>

Project Scope

Primary Market

Military and public safety organizations

Secondary Market

Defense agencies and private security companies

Assumptions

• Unmanned flight vehicles considered will be drones

Stakeholders

Northrop Grumman

- Tameika Hollis
- Stan Zoubek

COE Advisors

- Dr. Shayne McConomy
- Dr. Chiang Shih
- Dr. Camilo Ordonez

Drone Specs

Typical household drones

Effectiveness

- Minimum Requirement: disable
- Bonus: recovery

Range

30 feet radius dome

Figure 2: DJI Mavic Pro Quadcopter 4k Drone [1]

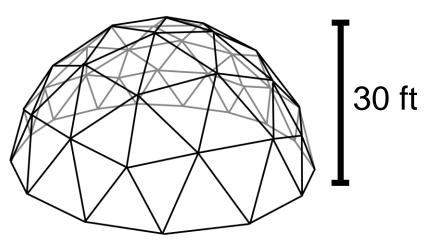


Figure 3: Visual representation of desired dome [2]

Operation

Trained human operator

Power

- AC Power
- 15-20 amps

Portability

- Portable
- 4 hour assembly time

Purpose

Focus on development process

Figure 4: Visual representation of sample user operation [3]

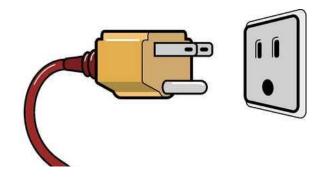
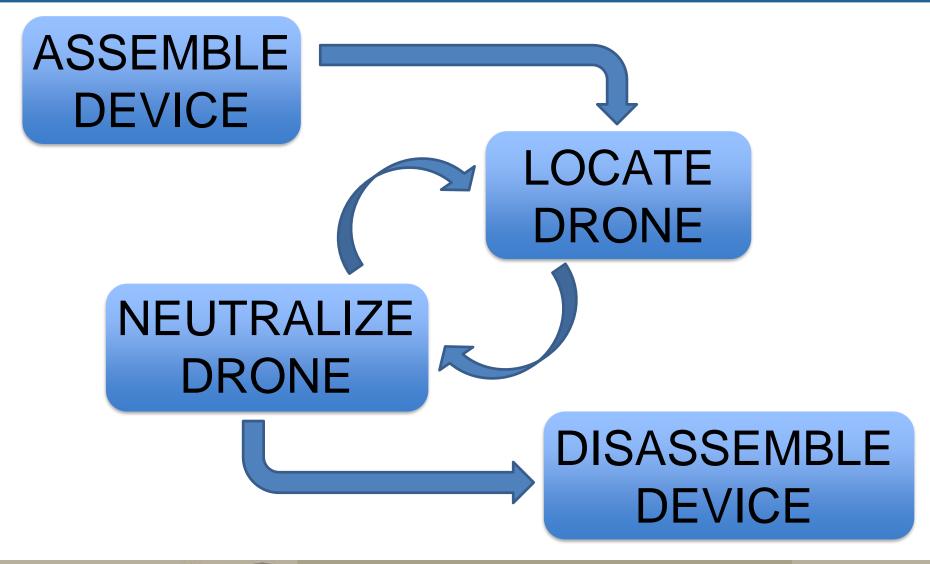



Figure 5: Simple wall plug and outlet [4]

Functional Decomposition

Next Steps

Understand importance of overlapping sub-functions within main functions

Identify range, power, and effectiveness target metrics

Omnidirectional vs. Directional Approach

References

[1] Argos (Photographer). (2017). *DJI Mavic Pro Quadcopter 4k Drone* [digital image]. Retrieved from <u>http://www.argos.co.uk/product/6259381</u>

[2] Y. (2011, November 01). Clipart – geodesic-dome [digital image]. Retrieved October 13, 2017, from <u>https://openclipart.org/detail/165554/geodesicdome</u>

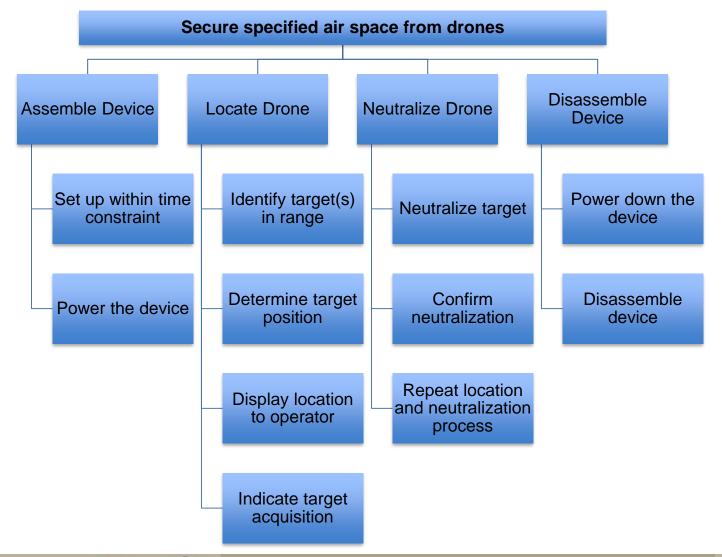
[3] ROCU-7 – Universal Wireless Controller for Unmanned Military Systems (2017). [digital image]. Retrieved October 13, 2017, from http://www.robo-team.com/products/rocu-7/

[4] M. (2014, September 04). Kerbal Attachment System (KAS) 0.4.7 –-Pipes as fuel lines and even fewer explosions! [digital image] Retrieved October 13, 2017, from<u>https://forum.kerbalspaceprogram.com/index.php?/topic/48738kerbal-attachment-system-kas-047-pipes-as-fuel-lines-and-even-fewerexplosions/&page=6</u>

Questions?

Backup "Detailed" Slides

- I. Customer Needs
- **II.** Functional Decomposition


Question?	Customer Statement	Interpreted Need
What is the size and type of drone to be neutralized?	Recreational drones that could be carrying IED's or have cameras.	Disable non-military, typical household drones.
How long does this device need to be operable for?	The device should work as long as possible. It can be plugged into a car, building, generator, etc.	AC power with 15-20 amp power consumption (typical outlet)
What is the outcome of the neutralized drone?	Looking to just neutralize the drone given the time constraints, but if possible recover the drone if it is not completely destroyed.	The threshold or minimum requirement would be to disable the drone. Recovering the drone would exceed expectations.

Question?	Customer Statement	Interpreted Need
Is the device expected to be autonomous?	No, due to time constraints it will most likely not be possible but ideally that's what we would want.	The threshold or minimum requirement is that the device provides user operation.
Is there a specific range that the device must function within?	30ft radius dome around device; may realize this is not possible and constraints may need to be adjusted.	30ft radius dome minimum but operate at longer range if possible.
Does the device need to be portable?	Yes, be able to assemble device within 4 hours.	Portable device with a quick set-up time.
What is the purpose of Northrop Grumman sponsoring this project?	Aid-to-hire and give students an understanding of the learning process. Northrop Grumman is not looking for a proof of concept to scale.	Our team should focus on the development process over delivering the final product.

Functional Decomposition

