

Design Review V

Travis Carter Brandon Klenck Peter House Arnold Schaefer

Team 4: Visual Monitoring System for Danfoss Turbocor Compressor IGVs

FAMU-FSU COLLEGE OF ENGINEERING MECHANICAL ENGINEERING

Danfoss IGV Monitoring System

Team 4

Travis Carter Product Engineer

Peter House Mechanical Design Engineer

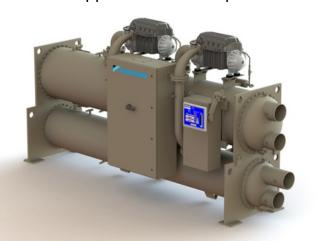
Brandon Klenck Controls Engineer

Arnold Schaefer Team Leader

FAMU-FSU COLLEGE OF ENGINEERING MECHANICAL ENGINEERING

Presented by Brandon Klenck

BACKGROUND INFORMATION AND PROJECT INTRODUCTION



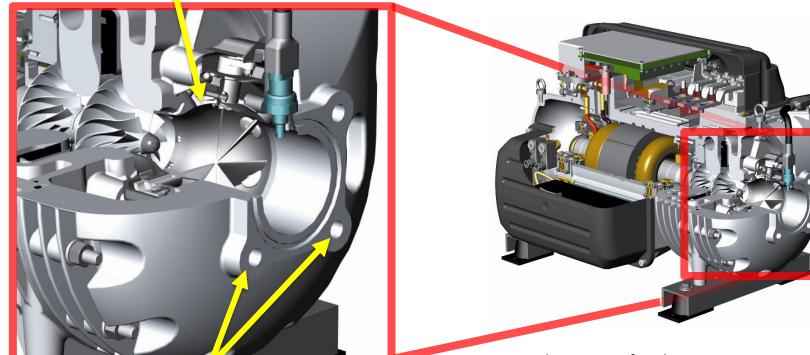
Danfoss Turbocor Compressors

Refrigerant Compressors

- TT Series
 - 4 Different Models
 - 300, 350, 400, 500
- Magnetic Bearing, Oil-Free
- Inlet Guide Vanes (IGVs)

Turbocor Oil Free Compressor

Chiller Application for Compressors


Applied in Water Chillers

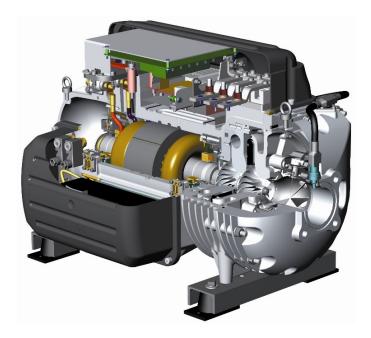
- Air and Water Cooled Chillers
- HVAC Applications
- Comfort Cooling for Buildings
- 60 200 Tons

TT Series Compressor Detail

Inlet Guide Vanes (IGVs)

Inside Cutout of Turbocor Compressor

Inlet Flange Attachment for Pipe and Monitoring System for Testing


Presenter: Brandon Klenck

FAMU-FSU COLLEGE OF ENGINEERING MECHANICAL ENGINEERING

Project Overview

- Currently No Visual for Inlet Guide Vanes (IGVs)
- Limited Angle Measurement
 - Stepper motor is used for angle control
 - No feedback
- Problems with IGVs
 - IGVs might flutter or vibrate
 - Possible IGV breakdown
 - Single IGV latching or "sticking"
- IGV Misfunction has Caused Data Loss for Danfoss Turbocor

Inside Cutout of Danfoss Turbocor Compressor

Project Goals

- Danfoss Turbocor Inlet Guide Vane (IGV) Monitoring System Goals:
 - Provide detailed visual monitoring of vane failure
 - Produce a system to detect position of individual IGVs
 - Minimize impact on the fluid flow

Compressor Inlet Cross-Section

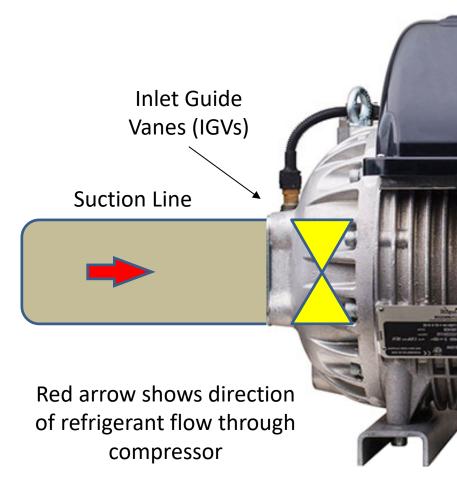
Notable Project Targets

Project Target Description	Target Value				
Allowable Flow Impact	No Detectible Swirl				
Minimum Visual Monitoring Rate	1 Hz				
Minimum Sample Rate for Measuring Angle	1 Hz				
Maximum Allowable Pressure Drop across Monitoring Device	0.2 psi				
Maximum Monitoring System Length	50 cm				
Minimum Angle Sensor Accuracy (In terms of percent open)	± 10%				

Project Timeline

FAMU-FSU COLLEGE OF ENGINEERING MECHANICAL ENGINEERING

Presented by Brandon Klenck


CONCEPT GENERATION AND SELECTION

Concept Generation for Each Subsystem

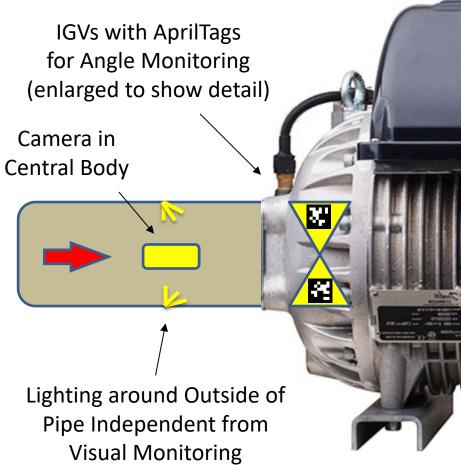
Visual Monitoring

- Mirror in central body with camera outside of pipe
- Camera in elbow of pipe
- Composite imaging
- Camera in central body
- IGV Angle Monitoring
 - Potentiometer on string
 - Laser vibrometer
 - AprilTags with aspect ratio visual analysis
- IGV Lighting
 - Clear pipe with ambient lighting
 - Central body lighting
 - Lighting around inside of pipe

Decision Matrix for Angle Measurement

Similar decision matrix completed											
for each subsystem		Potentiometer with Integrator						Gyroscope/ Gyrometer			
Option	Weight Factor	Score	Rating	Score	Rating	Score	Rating	Score	Rating	Score	Rating
Image Clarity	13.4	0	0	7	94	6	80	0	0	6	80
Camera Frame Rate	5.7	О	0	7	40	7	40	0	0	7	40
Angle Measurement Accuracy	6.5	4	26	3	20	9	59	6	39	9	59
Angle Measurement Refresh Rate	5.5	8	44	7	38	7	38	8	44	7	38
System Stability	26.4	1	26	7	185	8	211	1	26	8	211
System Length	11.1	7	78	6	67	6	67	7	78	6	67
Ease of Integration	6.4	1	6	5	32	4	26	1	6	4	26
Pressure Drop across System	6.5	4	26	4	26	5	33	2	13	5	33
			206		501		553		206		553

Presenter: Brandon Klenck

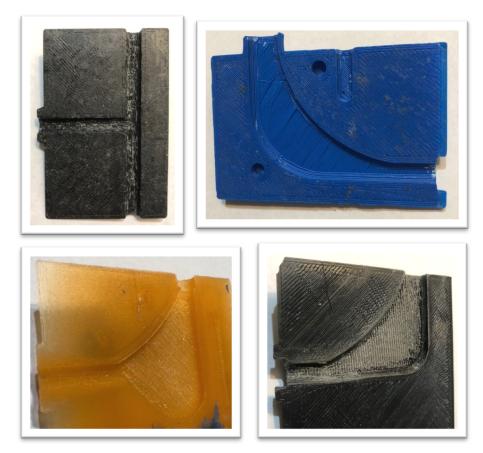


FAMU-FSU COLLEGE OF ENGINEERING MECHANICAL ENGINEERING

Subsystems with Concept Generation and Selection

Visual Monitoring

- Mirror in central body with camera outside of pipe
- Camera in elbow of pipe
- Composite imaging
- Camera in central body
- IGV Angle Monitoring
 - Potentiometer on string
 - Laser vibrometer
 - AprilTags with aspect ratio visual analysis
- IGV Lighting
 - Clear pipe with ambient lighting
 - Central body lighting
 - Lighting around inside of pipe



Presented by Peter House

PROTOTYPE & TESTING

Airfoil Prototypes

Airfoil Prototypes

- Tested channel size and path for camera fit
- Learned from each prototype
 - The curvature of the channel
 - How to make the alignment pins
 - Thickness increase close to camera head
 - Tolerances for the front edge of the airfoil
- Provided communication of ideas to sponsor
- Final prototype fit camera and sight glass

Presenter: Peter House

Sight Glass and Epoxy Tests

- Sight glasses of 4 different materials tested for reflection
- Application of epoxy was practiced
- Test of overflow of epoxy into camera housing
- Hole dimensional check for engineering drawings

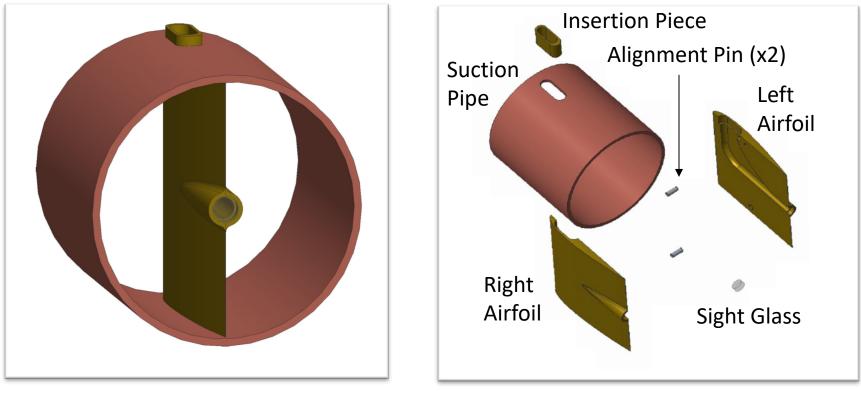
Sight Glass

Sight Glass and Epoxy Testing

Presenter: Peter House

Presented by Peter House

DETAILED DESIGN, FINAL DESIGN AND TESTING

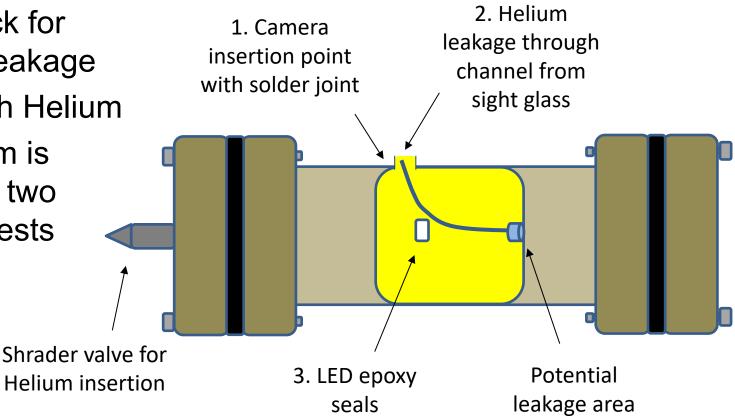

Final Design Layout

Presenter: Peter House

Final Design Assembly and Parts

Finished Assembly View

Exploded Assembly View


Presenter: Peter House

FAMU-FSU COLLEGE OF ENGINEERING MECHANICAL ENGINEERING

Pressure and Leakage Test

- Three main areas for to check for potential leakage
- Tested with Helium
- Mechanism is reused for two separate tests

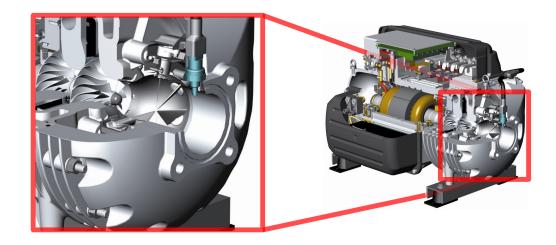
Presenter: Peter House

Summary

- Total Project Materials Budget
 - **\$3,000 \$5,000**
- Total Material Cost
 - **\$1,460**
 - Main cost was the videoscope
 - Other costs included the brass and epoxies

- Project Steps
 - Project Definition
 - Concept Generation
 - Concept Analysis
 - Concept Selection
 - Prototype & Testing
 - Detailed Design
 - Final Design & Testing
 - Reports and Documentation

Presenter: Peter House



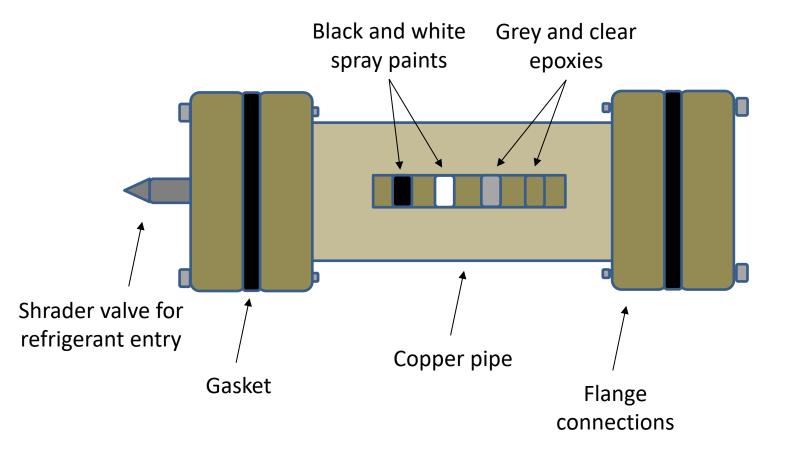
Thank You for Your Time. Questions?

FAMU-FSU COLLEGE OF ENGINEERING MECHANICAL ENGINEERING

Work Cited

Turbocor® Centrifugal Compressor Manufacturer | Danfoss. (n.d.). Retrieved October 08, 2017, from <u>http://airconditioning.danfoss.com/products/compressors/turbo</u> <u>cor/#/</u>

Magnitude® Magnetic Bearing Centrifugal Chillers. (n.d.). Retrieved October 08, 2017, from <u>http://www.daikinapplied.com/chiller-magnitude-magnetic.php</u>


Swatbotics. (2012, July 12). *Demo of April Tag localization* system [Videofile]. Retrieved from <u>https://www.youtube.com/watch?v=Y8WEGGbLWIA</u>

AprilTag Testing

Refrigerant Compatibility Test

Presenter: Arnold Schaefer

Future Work

- High-Cycle Monitoring System
 - Measure the vibrations of the vanes
 - Vibrometer or high speed camera
- Mechanically Implemented Sight Glass and Lighting Subsystem
 - Epoxy-free seals
 - Longer lasting solution with added reliability
- Remove Lighting around Videoscope Head
 - Reduce thickness of the airfoil in half
 - Less pressure drop and reduced flow impact
- Include Lighting Subsystem into Airfoil
 - Less intrusions in the suction pipe
- Alarms for IGV Malfunction
- Add Pressure, Temperature, and Airflow Sensors
 - Create a sellable package to other manufactures
 - All-in-one system without need for additional sensors in suction pipe

Presenter: Arnold Schaefer

