Inlet Guide Vane Monitoring System for Centrifugal Compressors

Engineering Design Day

Travis Carter

Brandon Klenck

Peter House

Arnold Schaefer

Team 4: Visual Monitoring System for Danfoss Turbocor Compressor IGVs

Introduction to the Team

Team 4 – Danfoss Turbocor Inlet Guide Vane Monitoring System

💮 🕮 FAMU-FSU Engineering

Presented by Arnold Schaefer

Danfoss Turbocor Funded Project

This engineering project titled "Inlet Guide Vane Monitoring System for Centrifugal Compressors" was funded by Danfoss Turbocor.

Project Objective

The objective of this engineering project is to provide a failure monitoring system to help Danfoss understand inlet guide vane problems in centrifugal compressors.

Presentation Overview

Section 1: Background Information and Project Introduction

Section 2: Concept Generation and Selection

Section 3: Detailed Design and Final Product

Section 4: Prototypes, Testing, and Results

Section 5: Summary and Future Work

1. Background & Introduction 2. Concept Gen. and Selection 3. Design and Final Product 4. Prototypes, Testing, and Results 5. Summary and Future Work

Background Information and Project Introduction

Presented by Travis Carter

1. Background & Introduction **2.** Concept Gen. and Selection **3.** Design and Final Product **4.** Prototypes, Testing, and Results **5.** Summary and Future Work

Danfoss Turbocor Compressors

Dual centrifugal compressor application in a Daikin Applied chiller

- Centrifugal compressors
 - R134a refrigerant
 - Magnetic bearing, oil-free
 - Inlet guide vanes (IGVs)
- Applied in chillers
 - Water cooled and air cooled
 - 60 200 tons
 - HVAC applications
 - Comfort cooling for buildings

Danfoss Turbocor oil-free centrifugal compressor

1. Background & Introduction **2.** Concept Gen. and Selection **3.** Design and Final Product **4.** Prototypes, Testing, and Results **5.** Summary and Future Work

Presented by Travis Carter

Danfoss Turbocor Compressor

Inlet guide vanes (IGVs)

Inside cutout of compressor

Inlet flange attachment for pipe and monitoring system for testing

Inlet guide vanes enlarged view

Problems with Inlet Guide Vanes (IGVs)

- IGV malfunction is a well known problem for field technicians
- Caused major data loss in test lab
- Currently no visual for IGVs
- Limited angle measurement
 - Stepper motor is used for angle control
 - No reliable feedback
- IGVs may flutter or vibrate
 - May be cause of IGV malfunction
- Single IGV latching or "sticking"

Inside cutout of Danfoss Turbocor compressor

1. Background & Introduction	2. Concept Gen. and Selection	3. Design and Final Product	4. Prototypes, Testing, and Results	5. Summary and Future W	ork
💮 🚳 FAMU-FSU Engine	ering	Presented by Travis Cart	er	MECHANICAL ENGINEERING	9

Project Goals

- 1. Provide visual monitoring of inlet guide vanes (IGVs)
- 2. Detect angle position of individual IGVs
- 3. Minimize impact on the fluid flow

Compressor inlet crosssection with IGV detail

Presented by Travis Carter

Concept Generation and Selection

Presented by Travis Carter

1. Background & Introduction 2. Concept Gen. and Selection 3. Design and Final Product 4. Prototypes, Testing, and Results 5. Summary and Future Work

Presented by Travis Carter

Concept Generation for Subsystems

Visual Monitoring

- Mirror in central body with camera outside of pipe
- Camera in elbow of pipe
- Composite imaging
- Camera in central body
- **IGV Angle Monitoring**
 - Potentiometer on string
 - Laser vibrometer
 - AprilTags with aspect ratio visual analysis
- **IGV** Lighting
 - Clear pipe with ambient lighting
 - Central body lighting
 - Lighting around inside of pipe

Presented by Travis Carter

Decision Matrix for Monitoring Subsystem

 Weight factors determined by HOQ

 Similar decision matrix for each subsystem 		Camera in Elbow		Camera & Central Body Mirror		Camera in Central Body		Composite Imaging	
Option	Weight Factor	Score	Rating	Score	Rating	Score	Rating	Score	Rating
Image Clarity	13	8	107	6	80	7	94	8	107
Camera Frame Rate	6	8	46	8	46	7	40	8	46
System Stability	26	8	211	5	132	6	158	8	211
System Length	11	2	22	8	89	8	89	6	67
Ease of Integration	6	3	19	8	51	7	45	5	32
Pressure Drop across System	7	8	52	7	46	7	46	9	59
Pipe Illumination	13	4	54	3	40	7	94	3	40
			511		484		565		561

1. Background & Introduction

2. Concept Gen. and Selection 3. Design an

3. Design and Final Product **4.** Prototypes, Testing, and Results

Its 5. Summary and Future Work

Concept Selection

1. Camera in central body for visual monitoring

2. AprilTags with aspect ratio visual analysis for IGV angle monitoring

- AprilTags are QR Codes
- Camera reads the aspect ratio of the tags

3. Lighting around inside of pipe for IGV lighting

Detailed Design and Final Product

Presented by Brandon Klenck

1. Background & Introduction **2.** Concept Gen. and Selection **3.** Design and Final Product **4.** Prototypes, Testing, and Results **5.** Summary and Future Work

Presented by Brandon Klenck

Final Design Layout

Presented by Brandon Klenck

Final Design Assembly and Parts

Final Product

Monitoring system with camera housed in central body of suction pipe

Front view of monitoring system

1. Background & Introduction2. Concept Gen. and Selection3. Design and Final Product4. Prototypes, Testing, and Results5. Summary and Future Work

Presented by Brandon Klenck

AprilTag or QR Code for Angle Monitoring

IGVs with AprilTags spray painted on

AprilTag/QR code

Single IGV with AprilTag

Software output of IGV angles

7	tage	s de	etected:	:
	Id:	0,	angle=	79%
	Id:	1,	angle=	78%
	Id:	2,	angle=	76%
	Id:	З,	angle=	73%
	Id:	5,	angle=	73%
	Id:	б,	angle=	74%
	Id:	7,	angle=	80%

1. Background & Introduction2. Concept Gen. and Selection3. Design and Final Product4. Prototypes, Testing, and Results5. Summary and Future Work

Presented by Brandon Klenck

Prototypes, Testing, and Results

Presented by Peter House

1. Background & Introduction2. Concept Gen. and Selection3. Design and Final Product4. Prototypes, Testing, and Results5. Summary and Future Work

Presented by Peter House

Airfoil Prototypes

- 3D Models were cheaper in material and time than brass
- Learned from each prototype
 - The curvature of the channel
 - How to make the alignment pins
 - Tolerances for the different cuts
- Provided communication of ideas to sponsor
- Final prototype fit camera and sight glass

3D modeling prototypes with final brass airfoil

Sight Glass Testing

- Tested for overflow of epoxy into camera housing
- Tested several methods of insertion
- Hole dimensional check for engineering drawings
- Precise measurements done for optimized bond line thickness

Aluminum Block Sight Glass Insertion Testing Apparatus

 1. Background & Introduction
 2. Concept Gen. and Selection
 3. Design and Final Product
 4. Prototypes, Testing, and Results
 5. Summary and Future Work

Presented by Peter House

Epoxy and Spray Paint R134a Compatibility

- Visually tested for possible chemical reaction to refrigerant
- Epoxies exposed to R134a for one week
- Spray paint passed test
- Clear epoxy failed, showing discoloration
- Gray epoxy passed test

Pressure and Leakage Test

Pressure Test

- Pressure burst test with water for 12 minutes
- Tested up to 375 PSI with no failure

Leakage Test

- System passed leakage test
- Tested with Helium in a vacuum
- Three main areas for potential leakage

View of sight glass inside pipe as possible leakage area

2. Seal on edges around insertion piece3. Seal from sight glass inside pipe

Testing and Project Target Results

Tested Target	Target Value	Result
Withstand test rig pressure	300 PSI	PASS, Withstood up to 375 PSI
No refrigerant leakage	No Helium leak	PASS, No detected leakage
Chemical reaction of materials to refrigerant	No reaction	PASS, No reaction detected
Minimum visual monitoring rate	1 Hz minimum	PASS, 60 Hz
Minimum angle sensor accuracy	±10 degrees	FAIL , for IGV positions 0° to 29° PASS , ±2° for IGV positions 30° to 110°
Maximum monitoring system length	50 cm maximum	PASS, 20 cm

Key Engineering Principles Used in Design

- Required sight glass thickness
- Required epoxy shear strength calculations
- AprilTag inlet guide vane angle calculation
 - 3D coordinate system modification
 - Programmed in C
- Technical specification analysis for camera selection

Diagram of sight glass used for epoxy strength and glass thickness calculations

Key Engineering Principles Used in Design

- NACA 15 airfoil profile implemented into Creo Parametric 3.0
- Calculated pressure drop across cross-sections using Bernoulli 's Equation
 - Airfoil reduces flow impact into compressor
 - Airfoil reduces drag of camera by factor of four

Airfoil half snapshot from engineering drawings

Taylor Series polynomial for NACA 15 profile

 $y_t = 5t \, \left[0.2969 \sqrt{x} - 0.1260 x - 0.3516 x^2 + 0.2843 x^3 - 0.1015 x^4
ight]$

* More Detailed Information Upon Request

Summary and Future Work

Presented by Arnold Schaefer

1. Background & Introduction 2. Concept Gen. and Selection 3. Design and Final Product 4. Prototypes, Testing, and Results 5. Summary and Future Work

Presented by Arnold Schaefer

Problems Encountered and Lessons Learned

Problem Encountered	Solution	Lesson Learned
Camera reflection on sight glass	Used external LEDs for lighting	Use the critical path in you project timeline to plan around time delays
Soldering Airfoil halves together did not seal properly	Used epoxy to join the two halves	Have a backup plan for each project component
Glass drill bit shipped in the incorrect size	Had sight glasses cut with waterjet	Personal relationships with machine shop and your team are invaluable
AprilTag program not running properly	Spent countless hours troubleshooting	There will always be unforeseen problems so test often and early

1. Background & Introduction2. Concept Gen. and Selection3. Design and Final Product4. Prototypes, Testing, and Results5. Summary and Future Work

Project Budget and Costs

\$1,350 under budget

Total materials budget

• \$3,000

Total material cost

- \$1,650
- Main cost was the videoscope at \$1,250
- Other costs:
 - Epoxies
 - Electronics
 - Plumbing hardware
- Some materials provided by Danfoss

3M high strength, refrigerant compatible epoxy

HDV540 Extech videoscope

Flanges and pipe provided by Danfoss Turbocor

1. Background & Introduction2. Concept Gen. and Selection3. Design and Final Product4. Prototypes, Testing, and Results5. Summary and Future Work

Summary

Final Product

- Airfoil in central body of pipe
- LED lighting
- AprilTag angle monitoring

Project Results

- Project Goals Achieved
 - 1. Provide visual monitoring of IGVs
 - 2. Detect angle of individual IGVs
 - 3. Minimize impact on the fluid flow

Lessons Learned

- Roadblocks are unavoidable
- Test early and often
- Communication is key

Monitoring system airfoil camera position

Inlet guide vane view from camera

Future Work

Testing of inlet guide vanes (IGVs)

- Different material IGVs
- Determine causes of IGV failure

Improving the design

- High-cycle monitoring system
- Mechanical design to replace epoxy of sight glass
- Remove lighting around videoscope head
- Alarms for IGV malfunction

Back View of Airfoil Facing IGVs with AprilTags

Special Thanks and Acknowledgements

Danfoss Turbocor

- Mr. William Bilbow Project Liaison
- Mr. Kevin Lohman for Machining the Airfoil

FAMU-FSU College of Engineering

- Dr. Shayne McConomy Class Professor
- Dr. Kunihiko Taira Project Advisor
- Dr. Chiang Shih
- Our Class Teaching Assistant Obiechina Abakporo
- Mr. Jeremy Phillips with the Machine Shop
- Mr. Anthony Camarda with the 3D Print Club

Other Contributors

- Mr. David Johnson for use of personal compressor and insight
- Mr. Chuck Pierson for knowledge on refrigeration and helpful insight

Thank You for Your Time. Questions?

Work Cited

Turbocor® Centrifugal Compressor Manufacturer | Danfoss. (n.d.). Retrieved October 08, 2017, from <u>http://airconditioning.danfoss.com/products/compressors/tur</u> <u>bocor/#/</u>

Magnitude® Magnetic Bearing Centrifugal Chillers. (n.d.). Retrieved October 08, 2017, from <u>http://www.daikinapplied.com/chiller-magnitude-</u> <u>magnetic.php</u>

Swatbotics. (2012, July 12). *Demo of April Tag localization* system [Videofile]. Retrieved from <u>https://www.youtube.com/watch?v=Y8WEGGbLWIA</u>

NACA 15 Airfoil Profile

$$y_t = 5t \, \left[0.2969 \sqrt{x} - 0.1260 x - 0.3516 x^2 + 0.2843 x^3 - 0.1015 x^4
ight]$$

- x is the position along the chord from 0 to 1.00, (0 to 100%)
- y_t is the half thickness at a given value of x (centerline to surface), and
- *t* is the maximum thickness as a fraction of the chord (so *t* gives the last two digits in the NACA 4-digit denomination divided by 100).