LIDAR Cave Mapper

ECE Team 10 FAMU-FSU College of Engineering Sponsored by:

Earth, Ocean and Atmospheric Science

ECE 10 the LIDAR crew

- EE: Alisha Hunt
- EE: Cesar Rivas
- EE: Jake Ogburn
- CPE: James Oliveros
- ME: Spencer Day
- ME: Hunter Hayden

Cave Mapping

Spencer Day

- A 3D map of a cave is extremely helpful when doing research, search and rescue, or simply planning a hike
- For years professional cavers have used LiDAR to map in three dimensions
- This process, and the equipment needed, is generally very expensive and meant for professionals
- The LiDAR Cave Mapper aims to make 3D mapping both more affordable and user friendly

Product Market

Spencer Day

- The LiDAR Cave Mapper has been designed for the amateur caver, hiker, or scientist
- Utilizes light detection and ranging technology, lightweight design, and simple moving parts
- The construction has been streamlined to lower cost
- Data can be uploaded simply to reveal a point cloud formation that represents the cave
- Cavers, hikers, outdoorsmen, and families will now be able to enjoy and afford a LiDAR Cave Mapper

Components

Jake Ogburn

Two motors

- One horizontal stepper motor for azimuth rotation
- One vertical stepper motor for angular rotation
- Motor drivers
- LIDAR Lite
 - Provides distance data
- Inertial Measurement Unit (IMU)
 - Provides location data for coordinates

Data Flow Hierarchy

Alisha Hunt

For every step

- Controller steps motor
- Retrieves distance from LiDAR
- Pulls positioning data from IMU
- Stores on SD card
 Repeat!!

Components

Alisha Hunt

Two motors

- One horizontal stepper motor for azimuth rotation
- One vertical stepper motor for angular rotation
- Motor drivers
- LIDAR Lite
 - Provides distance data
- Inertial Measurement Unit (IMU)
 - Provides location data for coordinates

Jake Ogburn

Current Consumption (One Hour): 0.7 Ahr

Current Consumption (One Target Area): 2.8 Ahr

Battery: ~ 6 Ahr for two runs

Mechanical Design

Jake Ogburn

- 3D printed housing
- Rotational base
- Case for portability
- Adjustable tripod for stability

Cesar Rivas

Setup

- Position tripod in center of scanning area.
- Ensure tripod is perfectly flat using tripod bubble-level.
- Adjust tripod height as desired.
- Attach scanner module onto tripod mount.

Setup (Continued)

Cesar Rivas

- Attach scanner module cables to corresponding controller module cables.
- Verify that all connections are properly secured.
- Connect negative and positive power cables to respective 12V battery terminals. Both can be found inside of storage box.
- Power on the scanning system by pressing down the button on the buck converter, located inside storage box.
- System is now ready to begin cave-scanning sequence.

Operation

Cesar Rivas

- To initialize cave-scanning sequence, press reset button found on microcontroller.
- Yellow LED will blink if system is scanning properly.
- If Red LED turns on, an error has a occurred and system must be reset.
- Green LED will turn on when cave-scanning sequence is completed.
- Scanning data is saved to Micro SD card attached to microcontroller.

Deconstruction and Storage Hunter Hayden

Power off system and disconnect power wires from battery terminals.

- Detach scanner and controller module cables.
- Remove scanner module from tripod, and efficiently position in storage box.
- Fully collapse tripod for transport.

Data Processing

Hunter Hayden

- Once the data has been saved onto the SD card, it will be uploaded to a point cloud software to display the data as a 3D point cloud model.
- Due to the resources available to us, we planned to use PTC Creo Parametric.
- Open source softwares such as Meshlab were also available and considered.

Run Results

James Oliveros

Show pictures!!

Image is basic scan with full step size. Microstepping can be used to refine the image.

Potential Improvements

James Oliveros

Configure different delay times

- Will improve run time
- More efficient
- Fix issues with data writing
 - File management needs improvement
 - Automatically write new files with each new scan point
 - Intermittent file writing
- Integrate multiple scans
 - Map large areas with complex geometry

Potential Improvements

James Oliveros

Deal with wiring management

- Wire snags cause motors to skip
- Implement Mode Selection
 - Preliminary scan to define modes for rooms and halls
 - Improve memory efficiency
- Add coordinates
 - Map to globe and compile scans to form system of discoveries

Questions?