Designing and Flying an Experimental Sounding Rocket

TEAM 24 ALEX MIRE TARIQ GRANT WILLIAM POHLE BRANDON GUSTO

4/13/2017 SPONSOR: FAMU-FSU COLLEGE OF ENGINEERING ADVISOR: DR. RAJAN KUMAR

Who We Are

- We are a team of highly motivated young engineers
- We have a diverse background of engineering experience
- We enjoy solving complex problems
- We all share a passion for spaceflight

IREC Competition

- Location: Truth or Consequences, New Mexico
- Date: June 20-24, 2017
- **Challenge:** To propel an experimental scientific payload to 10,000 feet in altitude
- **Purpose:** To promote experimentation in the field of sounding rocketry

Figure 1: Spaceport America^[1]

Competition Requirements

Payload

- 8.8 lbs
- CubeSat outer dimensions (10cm x 10cm x 11.35cm)
- Scientific experiment or technology demonstrations (recommended)

Recovery

- Dual Deployment required for vehicles 1,500+ ft
- Electronics
 - 1 COTS altimeter
 - Redundant electronics
 - Radio beacon

Figure 2: CubeSat Sizes^[2]

TEAM 24

Point Breakdown (1,000 Points Total)

- Entry Form and 3 Progress Updates (100)
- Project Technical Report (200)
 - Analysis
- •Design Implementation (200)
 - Competency of Design and Construction
 - Degree of SRAD
- •Flight Performance (500)
 - Apogee
 - Successful Recovery
- •Unsafe or Unsportsmanlike Conduct (-20)

Spaceport America Cup

Intercollegiate Rocket Engineering Competition Rules & Requirements Document

Figure 3: Competition rules document coverpage ^[3]

TEAM 24

Our Approach to the Problem

TEAM 24

Our Approach to the Problem

TEAM 24

Layout of a Sounding Rocket

TEAM 24 William Pohle

Developing a Model

- It is necessary to predict the performance of the vehicle
- Need to know how high vehicle will go based on liftoff mass and motor
- Determine if the rocket will be stable
- Determine if the rocket is safe from buckling under immense loads
- Many coupled equations are in play!

Figure 4: Hand drawn free body diagram

Flight Simulation

We created a simplified mathematical model to predict the flight of the vehicle:

What the model includes

- Form drag
- Skin friction drag
- Variable atmospheric pressure
- Variable thrust
- Variable vehicle mass

What it doesn't

- Compressibility effects
- Nonlinear propellant burn rate
- Wave drag

The model shows that of any single subsystem, the **propulsion** element

What the model suggests

subsystem, the **propulsion** element has the greatest impact on overall system performance

TEAM 24

Motor Performance Comparison

To reach our target altitude:

M1350P ~ 23 lbs. vehicle weight M1500G ~ 27 lbs. vehicle weight M650W ~ 32 lbs. vehicle weight M900 ~ 38 lbs. vehicle weight M1850W ~ 44 lbs. vehicle weight M750W ~ 46 lbs. vehicle weight

TEAM 24

Nose Cone Shape Optimization

- •Cone shape has an influence over the drag experienced by the rocket.
- •For our expected velocity, a cone with $x^{\frac{1}{2}}$ profile would be desired
- •To create this profile, a plot is made by graphing the following equation and revolving it around the x axis.

$$Y = Radius of tube \left(\frac{x}{Length of nose cone}\right)^{0.5}$$

Comparison of drag characteristics of cone profiles between Mach 0.8 – 2.0

TEAM 24

Buckling Analysis

- Axial compression of thin fiberglass tubes is a concern
- Utilize Johnson-Euler buckling failure theory
 - Key parameter is slenderness ratio
 - Predicts how much stress before buckling failure
- Factor of safety is ratio of expected stress to predicted stress

TEAM 24

Stability Analysis

- The rocket needs to fly straight (up)
- Relationship between center of mass and center of pressure determines stability
- Barrowman devised set of equations to determine CP location using rocket geometry
- Fins play the most important role!

The Final Design

- Length: 87 in
- Mass: 54.3 lb
- Rocket ID: 6 in
- Rocket OD: 6.14 in
- 4 segments
- Fiberglass Body

Figure 4: Rendering of the rocket

Booster Segment

- Aerotech M1845 motor (98mm)
 - 4.53 second burn
 - Rocket will experience 6.65 G's
- •Wooden centering rings
- •Fiberglass fins

Figure 5: Booster section and surrounding tube

Parachute Bays

- Drogue parachute: Rocketman 3ft parachute
 - Decent rate of 90 ft/s
- Main parachute: XL B2 parachute
 - Decent rate of < 17 ft/s
- "Zipper-less" design

Figure 6: Separated parachute bay.

Avionics Bay

- •Fiberglass outer body
- Ejection charges
- •Exposed ring for Altimeters
- •Parachute Mounting U-bolts
- Redundant electronics
 - Commercial Flight Controller
 - Student Designed Flight Controller

Figure 7: Avionics sled and bay body section^{[5] [6] [7]}

Nosecone and Payload

- 3D printed nose epoxied to fiberglass tube
- Centering Rings hold CubeSat unit
- CubeSat contains 8.8lb payload
- 3U CubeSat payload

Figure 8: Payload Section TEAM 24 Alex Mire 21

Research Payload – Active Flow Control

TEAM 24	Alex Mire	22

TEAM 24	Tariq Grant	23

Research Payload Components

- Payload must follow competition's pressure vessel requirements
- Compressed gas (9oz HPA tank)
- 12V Battery pack
- Regulator
- Adapters
- On/off valve
- Splitter and nylon tubing

Alex Mire

Build Status of Commercial Flight System

- Received and assembled
- Functional build
 - Speaker
 - Barometric sensor
 - Data cable and software
- Intended Dual-Deployment test
 - Timing e-matches
 - Black powder test

StratologgerCF

DT4U Cable

TEAM 24

Tariq Grant

Igniter Test

TEAM 24

Tariq Grant

SRAD Avionics

- Determine altitude and orientation
- Log flight data
- Activate experiment
- Deploy parachutes
- •Transmit GPS coordinates

Arduino Uno

Xbee Shield

BMP183

MircoSD Card Reader

Ultimate GPS

9-DOF IMU

Xbee Pro 60 mW

Build Status – SRAD Avionics

Avionics components

Testing setup

Bud	get
	\mathbf{O}

Component	Cost (\$USD)
Body & Fiberglass	400
Nosecone & Payload	450
Recovery	385
Avionics	260
Booster & Test Motor	2,160
Manufacturing Materials	135
Competition Fees	900
Travel	1,300
TOTAL	5,960 of 7,000
Amount Spent	3,135

TEAM 24	Tariq Grant	29

Safety

- •Fiberglass Construction
 - PPE: respirators, safety glasses, nitrile gloves, etc.
 - Area Setup: fans, plastic sheet, etc.
- Ground Testing
 - On-campus
 - Supervised by EH&S and COE safety coordinator
- •Flight Test
 - Off-Campus rocketry site
 - Distance is safety
 - External arming switches

TEAM 24

Tariq Grant

Gantt Chart

ID	Task Name	Duration	Start					Ŀ	May 2017							luno 2017					
				9 11	13	15 17 19 2	1 23 25 27	29		7 9 11	13 15	5 17 19	21 23	25 27	29 3	1 2 4 6	8 10	12 14	16 18	3 20 2	2 24 26
11	Booster	6 days?	Fri 4/14/17		l 🗂		1														
12	Install rail button	2 days	Fri 4/14/17																		
13	Install centering rings/fins	6 days	Fri 4/14/17				I														
14	Order motor grains	0 days	Fri 4/21/17			•	4/21														
16	Avionics	6 days	Fri 4/14/17				1														
17	Complete avionics segment	6 days	Fri 4/14/17																		
19	Recovery	5 days	Mon 4/17/17				1														
20	Install mounting hardware	3 days	Mon 4/17/17																		
21	Test deployment of recovery system	5 days	Mon 4/17/17				l														
23	Payload and Nosecone	21 days	Mon 4/17/17																		
24	Order any payload parts	1 day	Thu 4/20/17																		
25	Weigh/Integrate payload	21 days	Mon 4/17/17																		
26	Complete payload/nosecone section	0 days	Mon 5/15/17								•	5/15									
28	Test Launch	23 days	Mon 5/1/17					ſ								1					
29	Schedule test launch	5 days	Mon 5/1/17																		
30	Test launch	0 days	Thu 6/1/17													6/1					
32	ESRA Dates	51 days	Fri 4/14/17											_	_			_			
33	Payments	0 days	Fri 4/14/17		•	4/14															
34	All remaining paperwork	0 days	Fri 5/26/17											• 5/2	26						
35	Competition	5 days	Tue 6/20/17																		

TEAM 24

Tariq Grant

References

[1] Vyonyx ltd

[2] http://www.americaspace.com/?p=72686

[3] http://www.soundingrocket.org/sac-documents-forms.html

[4] http://www.clipartbest.com/parachute-clip-art

[5] https://grabcad.com/library/battery-pack-2

[6] https://grabcad.com/library/printed-circuit-board-4

[7] http://www.pro38.com/products/pro24/pro24.php#

[8] http://openrocket.sourceforge.net/

[9] http://www.nxp.com/products/software-andtools/hardware-development-tools/freedom-developmentboards:FREDEVPLA?tid=vanFREEDOM [10] http://www.mouser.com/ProductDetail/Digi-International/XBP9B-DMWT 012/?qs=NnxJOTDiCpOOEE6pVdOjDg%3D%3D&gclid=CLPj
7J3T2dECFUkDhgodvHAEDw

[11]

ttps://www.tinkerforge.com/en/doc/Hardware/Bricks/IM U_V2_Brick.html

[12] https://www.urbanwebsites.com/sabalanenterprises/index.html

[13] http://www.webstaurantstore.com/nemco-45050stainless-steel-hex-nut-for-easy-frykutters/59245050.html

[14] https://woodcraft-assets-weblinc.netdnassl.com/Images/products/600/152976.jpg

TEAM 24

Thank you! Questions?

