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Problem Statement & Scope
Design and construct a rocket capable of carrying an experimental payload to be 
launched and safely recovered within the parameters of the 2017 Intercollegiate Rocket 
Engineering Competition hosted by the Experimental Sounding Rocket Association.
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Figure 1: 2015-2016 Intercollegiate Rocket Engineering Competition [1]



Goals

•Successfully design, build and fly a single stage rocket

•Reach an apogee of 10,000 ft AGL

•Deploy a scientifically useful payload

•Safely recover all rocket components 

•Win the competition
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Figure 2: General Flight Profile[2]
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Objectives

1. Conduct Background Research

2. Develop Engineering Characteristics

3. Conceptual Design

4. Detailed Design

5. Scale Prototype

6. Full Size Prototype

7. Flight Testing

8. Final Design

9. Compete
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Figure 3: Conducting Background Research



Vehicle & Payload Constraints

•Payload must weigh 8.8 lb. minimum

•Vehicle & payload must be recoverable

•Must have an altimeter and flight controller

•Single stage only

•Non-toxic propellant

•No hazardous or live material 
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House of Quality

Most Important Factors: Stability
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Reliability Avionics 



Rocket Subsystems
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Figure 4: Rocket Subsystems [3]
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The model shows that of any single 
subsystem, the propulsion element 
has the greatest impact on overall 
system performance

What the model suggests

Flight Model & Simulation
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What the model includes

• Form drag

• Skin friction drag

• Variable atmospheric pressure

• Variable thrust

• Variable vehicle mass

What it doesn’t

• Complex geometry

• Lift induced drag

• Compressibility effects

• Vehicle rotation or instability

• Nonlinear propellant burn rate



Motor Performance Comparison [4-5]
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To reach our target altitude:

M1350P ~ 23 lbs. vehicle weight

M1500G ~ 27 lbs. vehicle weight

M650W ~ 32 lbs. vehicle weight

M900 ~ 38 lbs. vehicle weight

M1850W ~ 44 lbs. vehicle weight

M750W ~ 46 lbs. vehicle weight



Mach Regime Comparison[4-5]
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Expected Mach number:

M1350P ~ 0.8 at 23 lbs. 

M1500G ~ 0.8 at 27 lbs.

M650W ~ 0.6-0.7 at 32 lbs. 

M900 ~ 0.6 at 38 lbs.

M1850W ~ 0.6-0.7 at 44 lbs.

M750W ~ 0.5-0.6 at 46 lbs. 



Nose Cone Shape Optimization
•Cone shape has an influence over the drag 
experienced by the rocket.

•Ideal Cone shape varies based upon the 
speed of the rocket
• If subsonic a more domed shape is preferred.

• If supersonic a more coned shape is preferred.

•For our expected velocity, a cone with �
�

�

profile would be desired
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Figure 5: Drag characteristics of various nose 
shapes in the transonic-to-low Mach regions [6]



Nose Cone Shape Optimization — �
�

�

•To create this profile, a plot is made  by 
graphing the following equation and 
revolving it around the x axis.

� = ������ �� ����
�

�����  �� ���� ����

�.�

WILLIAM POHLE 12TEAM 24

Figure 6: Nose Profile Optimization Curve [7]



Nose Cone Shape Optimization — Length 

•To determine appropriate length of the nose 
cone the fineness ratio must be considered.

�������� =
�����

���� ��������

•As Velocity increases, the fineness ratio of the 
nose cone affects wave drag

•Higher Fineness ratios cause more surface 
friction drag.
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Figure 6: Nose Profile Optimization Curve [7]



• High Strength

• High Price

• Smooth Surface

• High Weight

Material Selection for Rocket Body
CARBON FIBER
• High Strength

• High Price

• Rough Surface

• Light Weight

PLASTIC

• Low Strength

• Low Price

• Smooth Surface

• Light Weight
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FIBERGLASS

• Medium Strength

• Low Price

• Rough Surface

• Light Weight

ALUMINUM 

Figure 7: Carbon Fiber [8]

Figure 9: Fiberglass [10] Figure 10: Aluminum [11]

Figure 8: Plastic [9]



• 3 angled fins

• cheap

• Could affect payload

• Could affect recovery

Stabilization

FIXED FINS

• Simple

• Cheap

• 3 fins

• Light Weight

THRUST VECTORING
• Complex

• Expensive

• Long Development

• Reduced drag

• Accurate flight trajectory
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STEERABLE FINS
• Complex

• 3 fins

• Requires actuators

• Heavier than fixed

SPIN STABILIZATION



Recovery
DUAL DEPLOYMENT REEFED PARACHUTE
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Figure 11: Dual Deployment [12] Figure 12: Reefed Parachute [13] Figure 13: Steerable Parafoil [14]



Recovery Concept Selection
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A Pugh Selection Matrix is used to determine the optimal recovery system: 

Figure 14: Recovery System Pugh Selection Matrix

Primary Recovery SystemPrimary Recovery System

• Reefed Parachute

Secondary Recovery SystemSecondary Recovery System

• Dual Deployment 



Recovery System Deployment
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Figure 15: CO2 Recovery System [15]

Figure 16: Black Powder Recovery System [16]



Avionics 
• Flight Computer • Altimeter • Batteries

Battery Decision Matrix

Criterion (Weight) Weight (4) Dimensions (3) Charge/Discharge (2) Safety (5) Cost (2) Total

Lithium Polymer 5 5 5 3 4 68

Nickel-Metal Hydride 4 4 3 5 4 67

Nickel-Cadmium 4 4 4 4 5 66

Flight Computer

Criterion (Weight) Ease of Use (3) Cost (5) Versatility (4) Total

Purchased 5 3 2 38

Self-Programmed 3 5 5 54

Altimeter Decision Matrix

Criterion (Weight) Weight (1) Ease of Use (4) Accuracy (5) Cost (2) Total

Barometric Sensor 5 5 3 5 50

Accelerometer 4 4 2 3 36

Combined 3 3 5 2 44
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Morphological Chart

Component Option 1 Option 2 Option 3 Option 4

Nose Cone �
�

� Profile 

Material Carbon Fiber Fiberglass Plastic Aluminum

Stabilization Fixed Fins Steerable Fins Thrust Vectoring Spin Stabilization

Recovery System Dual Deployment Reefed Deployment Steerable Parafoil

Recovery Deployment Compressed CO2 Black Powder

Flight Computer Purchased Self-made

Altimeter Barometer Accelerometer
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Risk Assessment & Safety
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Gantt Chart
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Thank you!
Questions?


