Designing and Flying an Experimental Sounding Rocket

TEAM 24 ALEX MIRE TARIQ GRANT WILLIAM POHLE BRANDON GUSTO

11/17/2016 SPONSOR: FAMU-FSU COLLEGE OF ENGINEERING ADVISOR: DR. RAJAN KUMAR

Problem Statement & Scope

Design and construct a rocket capable of carrying an experimental payload to be launched and safely recovered within the parameters of the 2017 Intercollegiate Rocket Engineering Competition hosted by the Experimental Sounding Rocket Association.

Figure 1: 2015-2016 Intercollegiate Rocket Engineering Competition^[1]

TEAM 24

ALEX MIRE

The Competition

•Category: 10,000 ft using COTS solid or hybrid propulsion

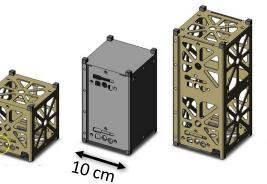
•Location: Truth or Consequences, New Mexico

•Date: June 20-24, 2017

 Purpose: To promote further experimentation in the field of sounding rocketry.

Figure 2: Spaceport America^[2]

ALEX MIRE


Competition Requirements

Payload

- 8.8 lbs
- CubeSat outer dimensions (10cm x 10cm x 11.35cm)
- Scientific experiment or technology demonstrations (recommended)

Recovery

- Dual Deployment required for vehicles 1,500+ ft
- Electronics
 - 1 COTS altimeter
 - Redundant electronics
 - Radio beacon

TEAM 24

ALEX MIRE

- 0000

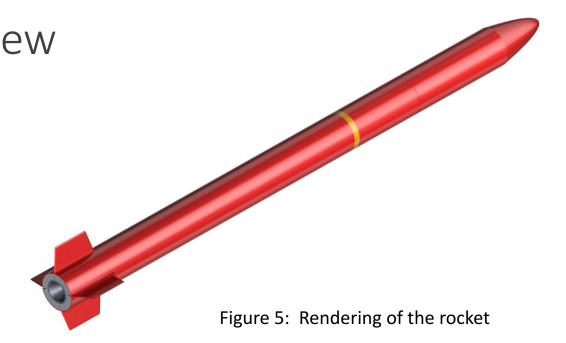
.....

Point Breakdown (1,000 Points Total)

- •Entry Form and 3 Progress Updates (100)
- •Project Technical Report (200)
 - Analysis
- •Design Implementation (200)
 - Competency of Design and Construction
 - Degree of SRAD
- •Flight Performance (500)
 - Apogee
 - Successful Recovery
- •Unsafe or Unsportsmanlike Conduct (-20)

Spaceport America Cup

Intercollegiate Rocket Engineering Competition Rules & Requirements Document


Figure 4: Competition rules document coverpage [4]

TEAM 24

ALEX MIRE

Design Overview

- Length: 8 ft
- Mass: 30.26 kg
- Rocket ID: 152 mm
- Rocket OD: 156 mm
- 5 segments
- Fiberglass Body

8'

Booster Segment

- •M Class Motor
- •Motor mount adapter
- •Aluminum centering rings
- •Fins mount to centering rings

Figure 6: Booster section and surrounding tube

Propulsion Selection

- Cesaroni Technology Incorporated M1450-P motor (98mm)
- 6.87 second second burn time
- •Rocket will experience 6.6 G's

Figure 7: Motor casing [5]

Drogue Parachute Bay

- Houses a 3ft drogue parachute by The Rocketman
 - Decent rate of 90 ft/s
 - Shock chord attachment
- •"Zipper-less" design
- •Easily replaceable if damaged during flight

Figure 7: Separated drogue parachute bay.

Avionics Bay

- •Fiberglass outer body
- Ejection charges
- Redundant electronics
- •Exposed ring for Altimeters
- •Parachute Mounting U-bolts

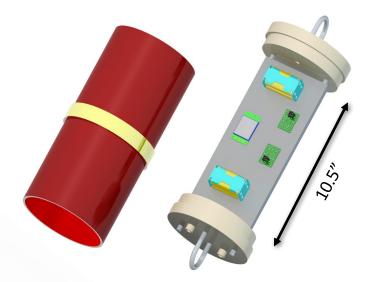


Figure 7: Avionics sled and bay body section^{[6] [7] [8]}

Main Parachute Bay

- •Houses a XXL B2 parachute
 - Decent rate of < 17 ft/s
- •One end has coupler pinned to nosecone
- •"Zipper-less"
- •Easily Replaceable.

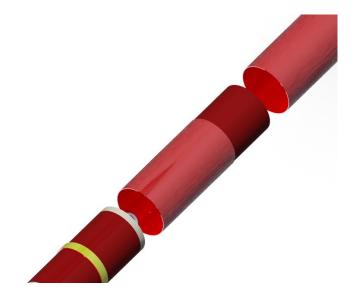


Figure 8: Main parachute bay

Nose Cone and Payload •3D printed nose epoxied to fiberglass tube •Centering Rings hold CubeSat •CubeSat contains 8.8lb payload Figure 9: Experimental housing section 27"

ALEX MIRE

12

TEAM 24

Weight and Cost

Section	Cost	Mass
Booster	\$1570.01	16.9 kg
Drogue Parachute	\$117.77	2.13 kg
Avionics Coupler	\$636.57	2.06 kg
Main Parachute	\$332.00	3.22 kg
Nosecone and Payload	\$75.98	5.93 kg
TOTAL	\$2732.32	30.26 kg

•Total only includes flight hardware.

- •Competition fees are \$900.
- •Flight hardware and competition fees subtotal **\$3632.32**

 		~ •
· A ľ	\mathbf{N}	24
.~`	VI.	27

Flight Calculations

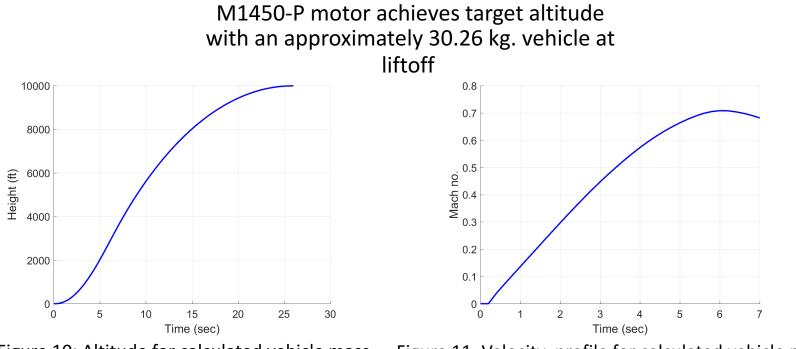
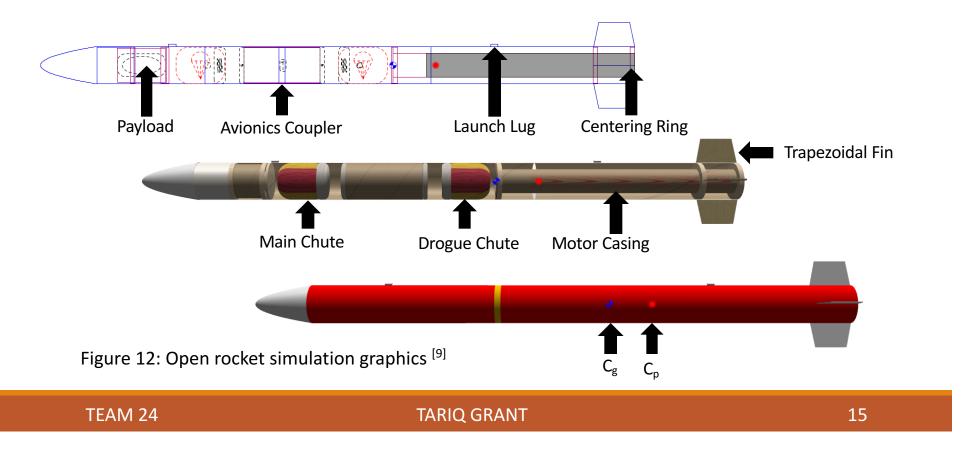



Figure 10: Altitude for calculated vehicle mass

Figure 11: Velocity profile for calculated vehicle mass

TEAM 24

OpenRocket Simulation Software

OpenRocket Data

Data	Simulated Value	
Apogee	3073 m (10,082 ft)	
Max. Velocity	242 m/s (794 ft/s)	
Max. Acceleration	65.3 m/s ² (214.2 ft/s ²)	
Center of Gravity	146 cm (57.5 in)	
Center of Pressure	165 cm (65 in)	

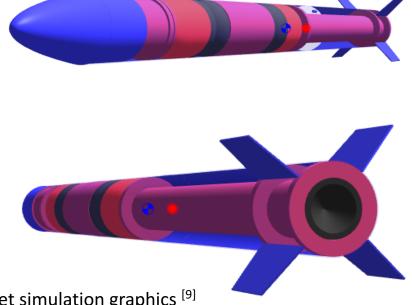


Figure 13: Open rocket simulation graphics ^[9]

TEAM 24

Failure Mode Analysis

Process Function	Part	Potential Failure Mode	Mechanism(s) of Failure	Potential Effects(s) of Failure	Recommended Action(s)
Avionics package sensing	Avionics bay	Disruption due to flight forces	Intensive loading	Loss of altitude data acquisition, and of parachute deploy capability	Ensure tight fit of the altimeter into the avionics bay / all wires have slack
Launch sequence	Control box	Failure to send command	Faulty circuit board / power disconnect	Failure to launch	Redundant systems already in place

TEAI	vi 24	TARIQ GRANT	17

Gantt Chart

ID	Task Name	2016 October 2016 November 2016 December 202 9 12 15 18 21 24 27 30 2 5 8 11 14 17 20 23 26 29 2 5 8
1	<research and="" concept="" generation=""></research>	
2	Background Research	
3	Brainstorming	
4	Concept Generation	
5	<detailed analysis="" design=""></detailed>	
6	Initial Concept Selection	
7	Raw Material Selection	
8	Initial CAD Model	
9	Develop Flight Controler	
10	Develop Recovery System	
11	Initial Payload Selection	
12	Payload Integration	
13	Body and Fin Analysis	
14	Tenative Final Design	
15	FMEA and H-FMEA	
16	Final Design	
17	Bill of Materials	
18	Cost Analysis	
19	<design implementation=""></design>	
20	Placing Orders	

TEAM 24

Changes and Current Issues

Changes

- No backup recovery system
- Store-bought altimeter
- 3D printed nose cone
- Storage & transportation
- "Zipper-less" design
- No bay doors

Current Issues

- Undeveloped payload
- Overall cost of design and competition
- Test launch uncertain

References

- [1] http://www.soundingrocket.org/latest-news
- [2] http://www.americaspace.com/?p=72686

[3] Vyonyx ltd

- [4] http://www.soundingrocket.org/sac-documents--forms.html
- [5] https://grabcad.com/library/quectel-uc20-pci-e-module-1
- [6] https://grabcad.com/library/battery-pack-2
- [7] https://grabcad.com/library/printed-circuit-board-4
- [8] http://www.pro38.com/products/pro24/pro24.php#
- [9] http://openrocket.sourceforge.net/

TEAM 24

Thank you! Questions?

