Design of a Multi-Functional Mobile Robot

Faculty Advisor: Dr. Camilo Ordoñez

Instructors: Dr. Nikhil Gupta Dr. Chiang Shih

Team 23

Team Members: Ryan Alicea Ben Edwards Abdur-Rasheed Muhammed Troy Marshall Natalia Cabal Michael Jones

Competition Overview

- Five Events
 - The Sprint
 - Timed event
 - Must touch a wall 10 meters away
 - Must cross starting and finish line
 - The Climb
 - Timed event
 - Three stairs
 - Between 8cm and 15cm in height per step
 - 50 cm x 50 cm landing per step

Competition Overview

- Five Events Continued
 - The Tennis Ball Throw
 - Scored by distance thrown along an axis
 - Ball can be placed on the device
 - Scored from where the ball stops
 - The Golf Hit
 - Scored by distance, and proximity to target axis
 - Score = Distance Along Target Axis Distance From Axis
 - Ball may be elevated 0.2 cm from the ground
 - Scored from the first bounce

Competition Overview

Five Events - Continued

The Lift

- Lift a weight as high as possible and hold it for three seconds
- Scoring formula:
 - Score = Mass of Weight(kg) * Distance Lifted (cm)
- Heavy weight lifted a small height
- Light weight lifted very high
- Overall Score
 - Sum of ranks from all events
 - Lowest score wins

Competition Constraints

- 50 cm x 50 cm x 50 cm box
 - Must contain:
 - Robot
 - Weight to be lifted
 - Batteries
 - Controller
- Batteries must be rechargeable
- All other energy must be returned to its original form
 - This includes:
 - Compressed Air
 - Springs

Event 1: The Sprint

- Two-Pronged Approach
 - Differential Drive
 - Two powerful motors
 - Left- and right-side tracks are driven by the same motor
 - "Tape Measure" Loophole
 - Smaller DC Motor extends

outwards towards the barrier

Event 2: The Lift

 Air Jacks & Pneumatic System
 Lift series of rectangular weights on a flat, level surface
 Spring-loaded tensioners add stability

Event 3: The Throw

Air Cannon & Pneumatic System
Simple "Spud Gun" design
Quick release valve
Control Launch angle using legs

Event 4: The Climb

- Chaos Frame
 - Four, individually tracked and rotating legs
 - Each leg capable of 360 degrees of rotation
 - Four points of constant ground contact

Event 5: The Hit

- Pitching Wheel System
 - Powerful DC motor spins a single wheel upwards of 5000 rpm
 - Ball is forced through a curved track such that it exits forwards
 - Exit velocities calculated to be upwards of 15 m/s

Challenges

Schedule

Conclusion

Modeling and Simulation

- FEA performed on all at-risk sections
 - Iterations of the models were performed until satisfactory
- CAD is nearly complete
 - One section (pitching wheel) remains to be designed

(Top) Displacement (mm) (Center) Von Mises Stress (kPa) (Bottom) Final product

Material Acquisition

- Motors
 - Arrived today
- Air Compressor
 - VIAir Sponsorship
- Air Jack
 - TBD

Ryan Alicea

Size Constraints

- The largest obstacle
 - Gear ratios
 - Air storage capacity
 - Actuators
 - Lifting mechanism
 - Compressor
 - Mechanisms for "The Hit"

Project Schedule: Gantt Chart

Rob	ot I	Desi	gn
-----	------	------	----

Wheel System

CAD Design Acquire Components Assemble Separately

Drive System

Assemble Legs Legs Complete Complete Drivetrain Model Acquire Components

Modeling

Complete CAD of Structure Cardboard Prototype

Air Cannon

Quick-Release Development Acquire Components Assemble Separately Functional Cannon Test Separately

Lift System

Compete ASME SPDC

Select Air Jack							
Design Tensioner System							
Acquire Components							
Assemble Separately							
Functional Lift							
Test Separately							
Assembly							
Assemble All Components							
Test Programming							
Testing							

		1/17			2/17					3/17				4/17		
	18	22	29	5	12	19	26		5	12	19	26	2	9	16	23
								L .								
8%								Robe	ot Desi	gn						
9%																
30%	CAD D	esign														
0%		Acq	uire Compo	onent												
0%				Assemble Sepa	1											
36%																
50%	Assem	ble Legs		-												
0%																
70%	4	Complete Dri	ive													
0%			Acquire	Component												
0%																
0%		Com	plete	1												
0%			Can	dboard												
5%	_															
15%	Quick-	Release n														
0%		Acqu	uire Compo	one												
0%				Assembly												
0%				14												
0%				- Te	st S											
8%	_															
40%	Select	Air Jack														
0%		Design Ter	sion													
0%			CAcquir	re Components												
0%					Assemble											
0%																
0%					Test Se	eparatel										
0%						_	_									
0%					Assem	ble All Compone	ents]									
0%							Test P	rogrammi	ing							
0%																
0%									Test as Who	le Robot						
0%																CME
0%6															2	SME

Ryan Alicea

Test as Whole Robot

Project Summary

- Competition
 - 5 events
 - Project Scope
- Design
 - Dual power sources
 DC electric and Pneumatic

Progress

- Legs nearly constructed
- Full design to be completed within a week

Ryan Alicea

Where We Are Going

Immediate Tasks

Complete redesign of approach to "The Hit"

"Tall Tentpole"

Make Cannon and Lift Operational

Long-Term Goals

- Have a functional robot by the end of February
- Finish troubleshooting the coding and power system before mid-March
- I month of testing before competition

References

[1] ASME, "Engineering competitions: Student design competition," in American Society of Mechanical Engineers, 2017. [Online]. Available: https://www.asme.org/events/competitions/student-design-competition. Accessed: Sep. 13, 2016.

[2] B. Webb, "Phonotaxis in Crickets and Robots," in University of Edinburgh School of Informatics, School of Informatics, The University of Edinburgh. [Online]. Available: http://homepages.inf.ed.ac.uk/bwebb/. Accessed: Sep. 20, 2016.

[3] B. UL, "Wheg," in Robotics Portal. [Online]. Available: http://www.roboticsportal.it/en/wheg. Accessed: Sep. 20, 2016.

[4] D. Mihai, "Wheeled mobile robot development platforms," in *Build Robots*, Smashing Robotics, 2012. [Online]. Available: https://www.smashingrobotics.com/wheeled-mobile-robot-development-platforms-from-budget-to-full-featured/. Accessed: Sep. 21, 2016.

[5] A. S. Inc, "Chaos high mobility robot | ASI," in ASI Robots, ASI, 2016. [Online]. Available: https://www.asirobots.com/platforms/chaos/. Accessed: Sep. 25, 2016.

[6] "Scissor lift – battery powered working height 8 meters extended platform 6 meters minimum height 2000 meters width 760mm weight 1000 Kg supplied on trailer total weight 1540 Kg. Price: Full day only \$180.00," in *Picton Hire*. [Online]. Available: http://pictonhire.com/product/scissor-lift/. Accessed: Oct. 06, 2016.

[7] A. Hitchcox, "Checklist for matching air cylinders to load requirements," in*Hydraulics & Pneumatics*, 2013. [Online]. Available: http://hydraulicspneumatics.com/cylinders-amp-actuators/checklist-matching-air-cylinders-load-requirements. Accessed: Oct. 01, 2016.

[8] "About Winbag," in Winbag USA. [Online]. Available: http://winbagusa.com/. Accessed: Oct. 08, 2016.

[9] B. Carter, "Robo-Pitcher Throwing in Detroit has 100MPH Fastball," in WIRED, WIRED, 2012. [Online]. Available: https://www.wired.com/2012/08/cy-ber-young-baseball-robot/. Accessed: Sep. 29, 2016.

[10] D. Tutelman, "What Happens at Impact," in *The Tutelman Site*, 2015. [Online]. Available: http://www.tutelman.com/golf/design/swing2.php. Accessed: Sep. 31, 2016.

[11]D. Ghanshyam Pardhi, "STRESS ANALYSIS OF SPLINE SHAFT USING FINITE ELEMENT METHOD AND ITS EXPERIMENTAL VERIFICATION BY PHOTO ELASTICITY," in IJmerr, 2014. [Online]. Available: http://www.ijmerr.com/uploadfile/2015/0409/20150409042403160.pdf. Accessed: Oct. 15, 2016.

Ryan Alicea

Questions?

