DESIGN OF A MULTI FUNCTIONAL MOBILE ROBOT

TEAM MEMBERS:

MICHAEL JONES

ABDUR-RASHEED MUHAMMED

NATALIA CABAL

RYAN ALICEA

BEN EDWARDS

TROY MARSHALL

FACULTY ADVISOR: DR. CAMILO ORDOÑEZ

INSTRUCTOR: DR. CHIANG SHIH

COMPETITION OVERVIEW

Five Events

The Tennis Ball Throw
The Golf Hit
The Lift
The Sprint
The Stair Climb

Figure 1: American Society of Mechanical Engineers

Project Objective

Design a multi-functional robot capable of lifting, throwing, and hitting while maintaining a high degree of mobility

Michael Jones

COMPETITION CONSTRAINTS

> 50 cm x 50 cm x 50 cm Box Must contain: Robot Weight to be lifted **Batteries** Controller All Energy Must Be Returned To Its Original Form This includes: Compressed Air > Springs **Michael Jones**

PROJECT OVERVIEW

Background Research

Brainstorming

Design Generation

Component Selection

Preliminary Testing

Assembly

Optimization

►<u>Win</u>

Michael Jones

Current Standing

Future Progress

ogress

DESIGN SELECTION

House of Quality

- Success is dependent on:
 - Power consumption
 Mass of lifted object
 Strength of frame
 - Battery capacity

Michael Jones

Morphological Chart/ Pugh Matrix > Primary Power Sources: Electric/Compressed Air

- Hit: Golf Club Head on Vane Actuator
- Sprint: Pneumatic Projectile
- Climb: Chaos Frame
- Lift: Pneumatic Pistons
- Throw: Air Cannon

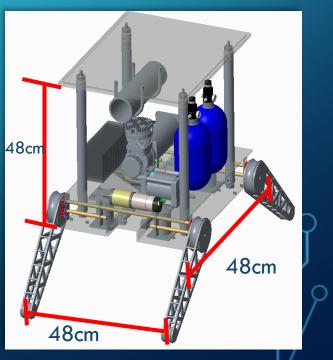


Figure 2: Original Design Selection

STRESS ANALYSIS: VON-MISES STRESS

Michael Jones

FURTHER DESIGN CONSIDERATIONS

≻The Lift Air Jacks Less expensive Lower level of complexity Object To Be Lifted Modular weight The Sprint Motorized Measuring Tape Concept

Michael Jones

Figure 4: BushRanger Air Jack

•FURTHER DESIGN CONSIDERATIONS

The Throw Cannon testing Preliminary prototype The Climb Fread selection Cost effective Flexible

Michael Jones

Figure 5: Cannon Test Rig

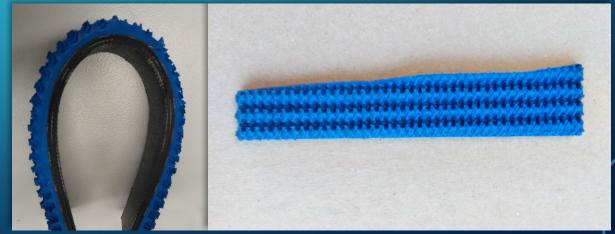


Figure 6: Tread Material Sample

USB SHIELD ARDUINO MICROCONTROLLER

Can communicate and support USB Hub Functions.

Power

- 500mA max current when powered by power supply.
 Lightweight with a 5V operating voltage.
- For relay-based DC motor control applications.
- Six pins for PWM.

Figure 7: USB Bluetooth Dongle

Figure 8: Arduino Uno Microcontroller

USB SHIELD ARDUINO MICROCONTROLLER - CONT'D.

Hosts an external power supply along with a USB hub and Vin pin for power

 Supplies 14 digital pins/6 power pins/6 analog pins
 Digital pins can be used as I/O pins

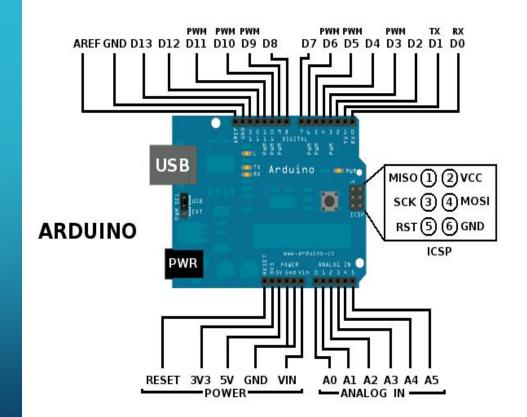


Figure 9: Pin I/O Assignment

CODING/TESTING MICROCONTROLLER

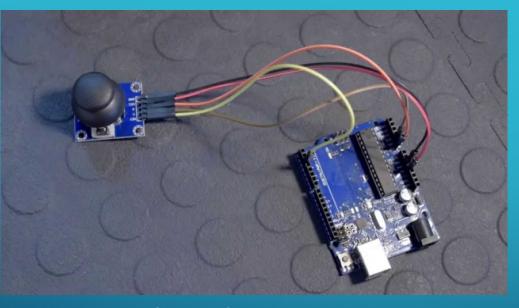


Figure 10: Joy Stick sensor connected to arduino MCU

- Coding/Debugging the microcontroller to control our robot
- Checking on the efficiency of every event based on the given code and electrical components used
- Determining the sensitivity of our controls with respect to the potentiometer

PULSE WIDTH MODULATION (PWM) FOR DC MOTOR

Finput To Output For DC Motors

Playstation 3 Six-Axis Controller

Input From Controller	Pulse Width Modulation	Outputs Toward Motors	Action From Motors
 Phyical input from buttons, triggers and analog stick on controller 	•Will control the speed and direction of the motors		 Four in total for the locomotion of the robot One for the motorized measuring tape Two extra motors for back-up in case of failure
	Figure 11: Fl based on use	of PWM Mo	tor

Abdur-Rasheed Muhammed

MOTOR SELECTION

- Primary Motor
 - ➢ 9015 motor with a 27:1 planetary gearbox
 - Used to control the tracks on the arms
 - Speed is determined based on sensitivity of the analog stick on controller
 - Events
 - Sprint and Stair climb

Figure 12: 9015 Motor

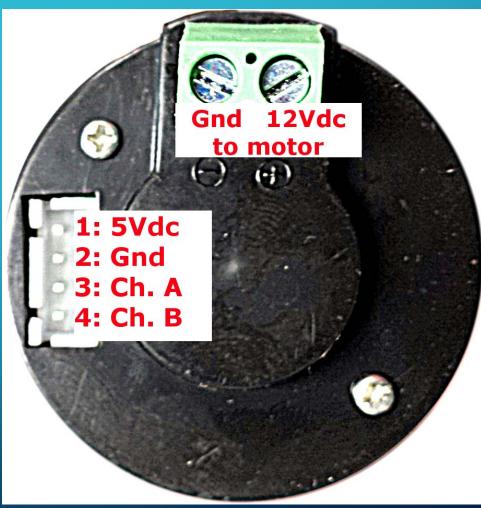
Secondary Motor

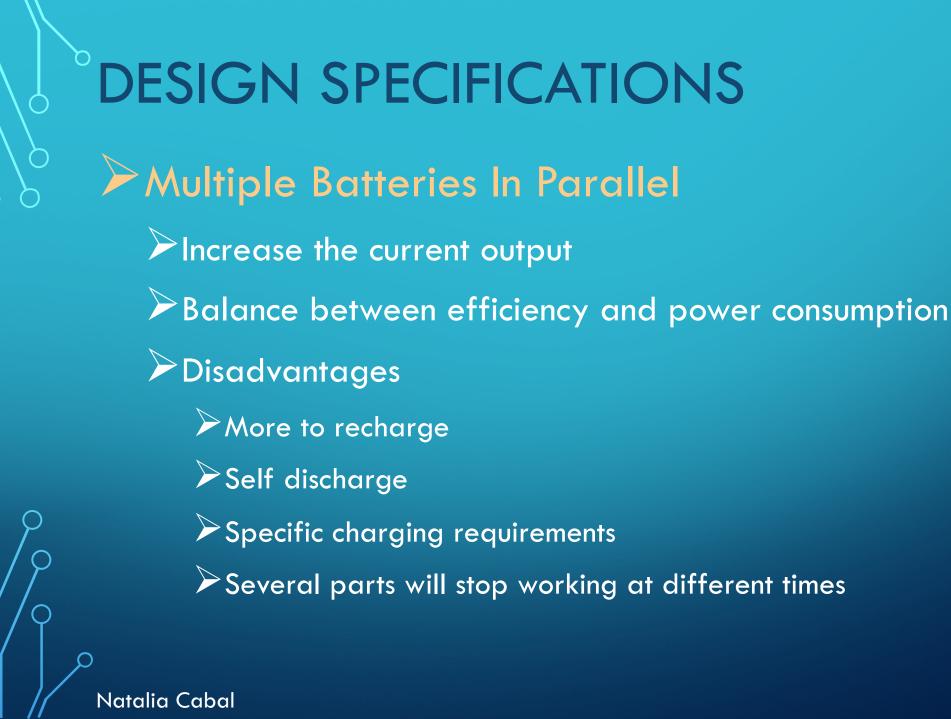
- RS775 motor with a 188:1 planetary gearbox
- Used to control the rotation of the arms
- Can rotate the arm 360° clockwise or counter-clockwise.
 Events
 - Stair climb and Hit

Abdur-Rasheed Muhammed

MOTOR CONNECTIONS

Operation ► 12V source ►5V input signal Encoders for channel A and B Direction Of Shaft Rotation Based on direction of current flow into the device




Figure 14: Pin I/O Assignment

BATTERIES

Lithium Polymer Batteries > Small dimensions Quickly recharge High energy density Alternative Choice: Nickel Metal Hydride Discharge rate User friendliness Much safer

Figure 15: Lithium Polymer Battery

RELAY CIRCUIT

General Purpose Motor Relay Circuit Electromechanical switch at 12V Synchronizes two motors for movement Effective Switching Mechanism \succ Each motor connected to relay circuit Effective in setting up controller Isolating and catching faults during commands Low Power Signal Used to control the circuit

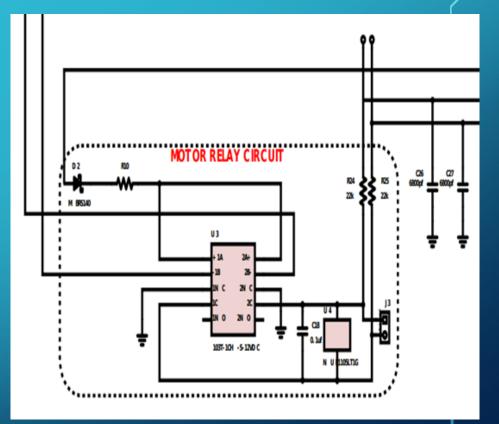


Figure 16: Motor Relay Circuit Diagram

FUTURE GOALS

Short-Term Goals

Prototyping Event Prototyping Finalizing Component Selection Order necessary parts Stress/Failure Analysis Machining/Manufacturing Long-Term Goals Assembly Preliminary platform testing

REFERENCES

2016.

[1] ASME, "Engineering competitions: Student design competition," in *American Society of Mechanical Engineers*, 2017. [Online]. Available: https://www.asme.org/events/competitions/student-design-competition. Accessed: Sep. 13, 2016.

[2] B. Webb, "Phonotaxis in Crickets and Robots," in *University of Edinburgh School of Informatics*, School of Informatics, The University of Edinburgh. [Online]. Available: http://homepages.inf.ed.ac.uk/bwebb/. Accessed: Sep. 20, 2016.

[3] B. UL, "Wheg," in *Robotics Portal*. [Online]. Available: http://www.roboticsportal.it/en/wheg. Accessed: Sep. 20, 2016.

[4] D. Mihai, "Wheeled mobile robot development platforms," in *Build Robots*, Smashing Robotics, 2012. [Online]. Available: https://www.smashingrobotics.com/wheeled-mobile-robot-development-platforms-from-budget-to-full-featured/. Accessed: Sep. 21, 2016.

[5] A. S. Inc, "Chaos high mobility robot | ASI," in ASI Robots, ASI, 2016. [Online]. Available: https://www.asirobots.com/platforms/chaos/. Accessed: Sep. 25, 2016.

[6] "Scissor lift – battery powered working height 8 meters extended platform 6 meters minimum height 2000 meters width 760mm weight 1000 Kg supplied on trailer total weight 1540 Kg. Price: Full day only \$180.00," in *Picton Hire*. [Online]. Available: http://pictonhire.com/product/scissor-lift/. Accessed: Oct. 06, 2016.

[7] A. Hitchcox, "Checklist for matching air cylinders to load requirements," in*Hydraulics & Pneumatics*, 2013. [Online]. Available: http://hydraulicspneumatics.com/cylinders-amp-actuators/checklist-matching-air-cylinders-load-requirements. Accessed: Oct. 01, 2016.

[8] "About Winbag," in Winbag USA. [Online]. Available: http://winbagusa.com/. Accessed: Oct. 08, 2016.

[9] B. Carter, "Robo-Pitcher Throwing in Detroit has 100MPH Fastball," in *WIRED*, WIRED, 2012. [Online]. Available: https://www.wired.com/2012/08/cy-ber-youngbaseball-robot/. Accessed: Sep. 29, 2016.

0] D. Tutelman, "What Happens at Impact," in *The Tutelman Site*, 2015. [Online]. Available: http://www.tutelman.com/golf/design/swing2.php. Accessed: Sep. 31,

QUESTIONS?

О