DEVELOPMENT OF CONSUMER GRADE LEVITATING HOVERBOARD

TEAM 20 - MIDTERM II PRESENTATION

TEAM MEMBERS:

- Bradshaw, Evelyn
- Drawdy, Shawn
- Levy, Jonathan
- Ross, Brian
- Sison, Kevin

FACULTY ADVISOR:

- Dr. Chiang Shih

SPONSOR:

- Dr. Michael Devine

INSTRUCTORS:

- Dr. Chiang Shih
- Dr. Nikhil Gupta

PRESENTATION OVERVIEW

- Background and Objectives
- Final Design Concept
- Calculations
- FMEA

- Materials
- Manufacturing
- Business Aspect
- Scheduling
- Conclusion

BACKGROUND AND OBJECTIVES

- NEED: Advanced hoverboards are very expensive and basic homemade attempts lack practical mechanics (e.g. steering) that make them viable.
- GOAL: Create a controllable hoverboard that can be used for recreation and/or short-range transportation. This hoverboard will use air as the levitating medium
- CONSTRAINTS: Balance, noise, and cost of production.

FINAL DESIGN CONCEPT

Performance Goals

Must support a total load of 300 lbs or 164 kg
Assumed craft weight: under 60 lbs
Assumed rider weight: 200 lbs max
Safety factor: 1.2
Designed air gap of 0.25" or 0.625 cm
Must generate acceleration of 0.5 m/s

FINAL DESIGN CONCEPT

Presenter: Shawn Drawdy Slide 4

CALCULATIONS

Lift Calculations for a Hovercraft:

The force needed to support the weight (W):

 $W = P \times A_C$

Where P is the cushion pressure and A_c is the effective cushion area. For most current designs, the cushion pressure varies in the range 1.2-3.3 kPa (25-70 lb/ft²).

The required Volumetric flow rate (VFR) is then:

$$VFR = A \times V_d$$

with the values A, and V_d being area of the vessel, and velocity of air discharge, respectively.

Comparing this to our supplier's lift calculator, the final VFR needed to maintain the 0.25" air gap was found to be 1606 CFM.

Presenter: Shawn Drawdy Slide 5

CALCULATIONS

□ Lift Calculations for a Hovercraft:

The power (Pa) required to sustain the air cushion at the peripheral gap is given by:

$$P_a = h_C \times I_{CU} \times D_C \times \frac{W^{3/2}}{A_C} \times \frac{2^{1/2}}{d}$$

Where h_c is the clearance height, I_{CU} is the cushion perimeter, d is the density of air and D_c is the discharge coefficient (it varies from 0.5-1.0 depending on wall design but assume it is equal to 0.611 for a skirt with a straight wall).

This power was then simulated by two smaller 800 cfm air blowers attached at the front of the base for lift allowing our 0.25" gap.

CALCULATIONS

Axial thrust calculations for ducted fan:

 $a=0.5\,{}^m\!/_{s^2}$, $m=136\,kg$, $p=1.225\,{}^{kg}\!/_{m^3}$

Axial Thrust $(T) = mass(m) \times acceleration(a)$

Thrust Needed: approx. 18 pounds.

Supplier Fan Blade Specifications: 24 inch diameter, Type 3, 4 blades in 8blade hub, 3600 rpm, at stated blade pitch produces:

25 degrees, 9480 CFM, 17.5 pounds, using 3.5 HP

Reference Equations for these Specs:

Duct $Area(A) = \pi \times radius(r)^2$ $A = 1.167m^2$

 $T = CT \times DischargeVelocity(V_d)^2 \times A \times p$

Coefficient of thrust(CT) for small Ducted Fans: typically around 0.03

Presenter: Shawn Drawdy Slide 7

MAJOR DESIGN CHALLENGES

- Multitude of factors affecting hovering performance. Many that depend on each other.
- There is a delicate balance that must be achieved between battery power and battery weight in order to supply enough CFM to lift the craft.
- Few conventional electric motors can supply the necessary kW in order to achieve a desirable thrust using a single propeller. Many that do require high voltages, around 230V, in order to power them. These motors are also very heavy.
- Achieving this voltage without a cord gets expensive very quickly. If you were to use standard 12V golf cart batteries in a series, each approximately \$65 and 20lbs. You would need 19 batteries, totaling \$1,235 and 380lbs in order to reach that voltage.

Failure Mode and Effects Analysis

Table 1 – Failure Mode and Effects Analysis (FMEA)

Component/Function	Failure Mode	Cause	Effect	Severity							
Skirt	Broken Seal	Improper assemblyDamaged	 Hoverboard will not inflate 	High – Will not be able to operate if skirt is flat							
Air Blower	Insufficient flow rate	 Low power supply Product defect 	 Hoverboard will not inflate 	High –Board will not be able to operate if skirt is flat							
Board	Cracks, Dents	Too much weightImproper use	• Unsafetoride	High – will not be able to support customer weight.							
Power Supply	Dead battery/insuffici ent supply	UnchargedFaulty battery	 Blower will not work Thrust will not work 	High – the whole operation depends on power supply							
Propeller Fans	Unable to rotate and provide thrust	Faulty AssemblyDead Battery	 Hoverboard will have no thrust 	Medium– Board will still float, but will not move deliberately							
Steering Lines	Unable to control fans	 Faulty wiring / assembly 	 Unable to steer the hoverboard 	Medium– Board will float, but will be uncontrollable							

Presenter: Shawn Drawdy

FCOFV

- Function
 - Light, inexpensive, stiff, strong rectangular plate
- Constraints
 - Length (L)
 - Can not plastically deform under a load (F)
 - Width (b)
 - Deflection (δ)
- Objectives
 - Minimize the mass and cost
- Free Variables
 - Material
 - Thickness (†)

Presenter: Brian Ross

Constraints

- Length (L)
- Can not plastically deform under a load (F)
- Width (b)
- Deflection (δ)

Analysis for objectives in regards to the strength constraint:

 $m = (V)(\rho) = (A)(t)(\rho) = (L)(b)(t)(\rho)$

$$\sigma = \frac{(0.75)(F)(b^2)}{(t^2)\left(1.61\left(\frac{b^3}{L^3}\right) + 1\right)} \to F = \frac{(\sigma)(t^2)\left(1.61\left(\frac{b^3}{L^3}\right) + 1\right)}{(0.75)(b^2)}$$

$$t = \frac{(m)}{(L)(b)(\rho)}$$

$$F = \frac{(\sigma) \left(\frac{(m)}{(L)(b)(\rho)}\right)^2 \left(1.61 \left(\frac{b^3}{L^3}\right) + 1\right)}{(0.75)(b^2)}$$

Presenter: Brian Ross

$$F = \frac{(\sigma) \left(\frac{(m)}{(L)(b)(\rho)}\right)^2 \left(1.61 \left(\frac{b^3}{L^3}\right) + 1\right)}{(0.75)(b^2)}$$

m =
$$\frac{(0.75)^{\frac{1}{2}}(b)^{2}(F)^{\frac{1}{2}}(L)(\rho)}{\left(1.61\left(\frac{b^{3}}{L^{3}}\right) + 1\right)^{\frac{1}{2}}(\sigma)^{\frac{1}{2}}}$$

Material Index (M) is the inverse of the material properties

$$M_{STR} = \frac{(\sigma)^{\frac{1}{2}}}{\rho}$$

Presenter: Brian Ross Slide 13

Analysis for objectives in regards to the stiffness constraint:

$$m = (V)(\rho) = (A)(t)(\rho) = (L)(b)(t)(\rho)$$

$$\delta = \frac{(0.142)(F)(b)^4}{(E)(t)^3 \left(2.21 \left(\frac{b^3}{L^3}\right) + 1\right)}$$

$$t = \frac{(m)}{(L)(b)(\rho)}$$

$$\delta = \frac{(0.142)(F)(b)^4}{(E)\left(\frac{(m)}{(L)(b)(\rho)}\right)^3 \left(2.21\left(\frac{b^3}{L^3}\right) + 1\right)}$$

Presenter: Brian Ross

$$\delta = \frac{(0.142)(F)(b)^4}{(E)\left(\frac{(m)}{(L)(b)(\rho)}\right)^3 \left(2.21\left(\frac{b^3}{L^3}\right) + 1\right)}$$

$$m = \frac{(0.142)^{\frac{1}{3}}(F)^{\frac{1}{3}}(b)^{\frac{7}{3}}(\rho)(L)}{(\delta)^{\frac{1}{3}}(E)^{\frac{1}{3}}(2.21\left(\frac{b^3}{L^3}\right) + 1)^{\frac{1}{3}}}$$

Material Index (M) is the inverse of the material properties

$$M_{STF} = \frac{(E)^{\frac{1}{3}}}{\rho}$$

Presenter: Brian Ross

Due to multiple constraints and multiple objectives, material indices must include cost and coupling constants for a decision to be made on only one material.

$$C_{tot} = (m)(C_m)$$

$$M_{\text{COST-STR}} = \frac{(\sigma)^{\frac{1}{2}}}{(\rho)(C_{\text{m}})}$$

$$M_{\text{COST-STF}} = \frac{(E)^{\frac{1}{3}}}{(\rho)(C_{\text{m}})}$$

Presenter: Brian Ross Slide 18

Coupling constant

$$C_{\text{tot-STR}} = \frac{(0.75)^{\frac{1}{2}}(b)^{2}(F)^{\frac{1}{2}}(L)}{\left(1.61\left(\frac{b^{3}}{L^{3}}\right) + 1\right)^{\frac{1}{2}}(M_{\text{COST-STR}})}$$

$$C_{tot-STF} = \frac{(0.142)^{\frac{1}{3}}(F)^{\frac{1}{3}}(b)^{\frac{7}{3}}(L)}{(\delta)^{\frac{1}{3}} \left(2.21 \left(\frac{b^3}{L^3}\right) + 1\right)^{\frac{1}{3}} (M_{COST-STF})}$$

Presenter: Brian Ross Slide 19

Equating the two previous equations will then yield:

$$\frac{(0.75)^{\frac{1}{2}}(b)^{2}(F)^{\frac{1}{2}}(L)}{\left(1.61\left(\frac{b^{3}}{L^{3}}\right)+1\right)^{\frac{1}{2}}(M_{COST-STR})} = \frac{(0.142)^{\frac{1}{3}}(F)^{\frac{1}{3}}(b)^{\frac{7}{3}}(L)}{(\delta)^{\frac{1}{3}}\left(2.21\left(\frac{b^{3}}{L^{3}}\right)+1\right)^{\frac{1}{3}}(M_{COST-STF})}$$

Rearranging variables in terms of y = mx + b

$$M_{\text{COST-STF}} = \frac{(0.142)^{\frac{1}{3}}(b)^{\frac{1}{3}} \left(1.61 \left(\frac{b^3}{L^3}\right) + 1\right)^{\frac{1}{2}}}{(\delta)^{\frac{1}{3}} \left(2.21 \left(\frac{b^3}{L^3}\right) + 1\right)^{\frac{1}{3}} (0.75)^{\frac{1}{2}}(F)^{\frac{1}{6}}}$$
(M_{COST-STR})
Presenter: Brian Ross Slide 20

The coupling constant is simply the slope of the previous equation

Best materials:

- CFRP (Carbon Fiber Reinforced Plastic) (composite)
- Parallel grain wood
- PVC (thermoplastic polymer)

Decision of material:

- CFRP
- Yields a mass of:
 - 2.12 kg = 4.67 lbs
- Yields a thickness of:
 - **0.9** mm

Presenter: Brian Ross

MANUFACTURING

BUSINESS ASPECT

Name: HHBoards

Tag Line: "Let Us Lift You"

Customer problems:

Commercial existing hoverboards - \$10,000.

Our product will be significantly less expensive.

- Intellectual Property
 - Trademark:

The name of brand

Tagline

LOGO

Patent:

The Mechanical Design

Slide 24

orizon

overboards

BUSINESS MODEL CANVAS

Key Partners	Key Activities	Value Propositions	Customer Relationships	Customer Segments		
FAMU-FSU College of Engineering Common Vendors	Research and Development Manufacturing Logistics and Supply Chain	Service - Customer Convenience Customer Needs - Recreational aspect Key Features - Wireless - Inexpensive - Safe	Market Ambassador Rentals at Park, Malls, and Technologic Conference Keep open customer communications	Age 7 and older Outdoor users Revenue Streams		
Cost Structure	Properties	- Mobile		Google AdSense		
Material Cost Manufacturing Cost Worker Compensation Advertisement Cost	- Trademark		Channels	Direct Sale		
	- Patents		Social Media Posters Commercials Stores Magazine	Services		

Presenter: Jonathan Levy

B.M.C. SEGMENTS

Customer Relationships

- Marketing Ambassadors
- Product Rentals at Parks, Malls, and Technological Conferences
- Open communication with customers

Customer Segments

- Age 7+
- Users
 - Commuters
 - Outdoor users

Presenter: Jonathan Levy

B.M.C. SEGMENTS

Revenue Streams

Google AdSense

- We provide space on our website
- Works by matching text and image by the content on our website
- We get paid from advertisers
- Direct Sales from Customers
 HHBoards purchased through website
- Rental Services

B.M.C. SEGMENTS

Cost Structure

- Material Cost
- Manufacturing Cost
- Advertisement Cost

Product Key Features

- Wireless
- Inexpensive
- Safe
- Electric Powered

B.M.C SEGMENTS

Value Propositions

- Customer needs
 Performance
 Cost effectiveness
- Customer Convenience
 Ease of Use
 Broad age range

Channels

- Social Media
- Commercial
- Stores
- Magazines
- Posters
- Business Owned Website

Presenter: Jonathan Levy

SCHEDULING

Table2-Gantt Chart

Task Name 👻		Start 👻	Finish	nber 2016			October 2016			November 2016							Decer			
	Duration 👻			9	14	19	24	29	1 9	14	19	24	29	3	8	13	18 2	3 2	28	3
Research	33 days	Sat 9/10/16	Tue 10/25/16									1								
Identify Optimal Materials	11 days	Sat 10/1/16	Fri 10/14/16							1										
Choose a Concept	12 days	Sat 10/15/16	Mon 10/31/16																	
Basic Prototype	7 days	Sat 10/22/16	Mon 10/31/16								I									
Begin CAD Model	16 days	Mon 10/31/16	Mon 11/21/16																	
Calculations for Operation	12 days	Mon 10/31/16	Tue 11/15/16										I							
Set final measurements	5 days	Tue 11/15/16	Mon 11/21/16																	
Final Parametized CAD Model	5 days	Tue 11/22/16	Mon 11/28/16																	
Create Purchase Order	5 days	Tue 11/29/16	Sat 12/3/16																	
Final Report and Presentation	6 days	Tue 11/29/16	Tue 12/6/16															1		

Presenter: Jonathan Levy

CONCLUSION

Final concept has been chosen

- Engineering challenges remain for the operation
- FMEA was defined for the product's operation
- Ideal materials for hull parts identified
- Business Model Canvas developed as part of InNOLEvation competition

REFERENCES

- "The Hendo Hoverboard." The Hendo Hoverboard. Arx Pax, LLC. Web.
- The Zen Cart[™] Team and Others. "Hovercraft Kits." Universal Hovercraft, The World Leader in Hovercraft Technology. Universal Hovercraft of America, Inc., Web.
- "Free QFD Templates." RSS. QFD Online, 11 Dec. 2007. Web.
- "The Finger Skirt." Hovercraft Finger or Segmented Skirt. 4wings Hovercraft Development. Web. http://wings.com.phtemp.com/tip/finger.html.
- Monster Capacity Multi-Voltage Portable Charger External Battery Pack. (n.d.). Retrieved October 11, 2016, from <u>https://www.amazon.com/Poweradd-Pilot-Pro-32000mAh-Multi-Voltage/dp/B00DN0KBXU</u>
- Black & Decker 18V Slide Pack Battery. (n.d.). Retrieved October 11, 2016, from <u>http://www.target.com/p/black-decker-18v-slide-pack-battery/-/A-</u> <u>10540887?ref=tgt_adv_XS000000</u>
- http://www.hoverhawk.com/lc
- Theory of Ground Vehicles, 4th Edition
- Ashby, M. F. Materials Selection in Mechanical Design. Burlington, MA: Butterworth-Heinemann, 2011. Print.

Presenter: Jonathan Levy Slide 32

QUESTIONS?