

## Design and Development of a Human Powered Vehicle: NASA Competition

Advisors: Dr. Chiang Shih

Dr. Nikhil Gupta

Donors: Great Bicycle Shop, University Cycles

Sponsor: Florida Space Grant Consortium

Luke Maeder Katherine Estrella Quentin Hardwick Jacob Van Dusen Garrett Rady

**TEAM 17** 



## The Competition Basics

#### Prototype a vehicle that ...

- Is human-powered
- Accommodates two people
- Has off-road capabilities
- Is 'small' and 'light'
- Is safe
- Wheels must be manufactured

#### **Needs Statement:**

"There needs to be a ground vehicle powered by fit male and female drivers that is capable of competing in the NASA Human Exploration Rover challenge."

#### **Restated Goals Statement:**

"Successfully create a working prototype vehicle. Attempt to win the rookie award at competition."

GARRETT RADY 2

## LAST YEAR'S OBSTACLES













## Component Morphology

#### **Design chassis**

 Frame style, material, suspension, collapsibility, seat orientation

#### Design of drivetrain

- Chains, belts, reciprocating lever transmission
- Two-wheel vs. all-wheel drive
- Separate or combined drivetrains for two drivers

#### Steering

- Steering wheel, hand levers
- Two-wheel or all-wheel steering

#### **Brakes**

• Disc brakes, drum brakes, rim brakes

#### Design of wheels

• Materials, size, shape, tread

GARRETT RADY 4

## Rhode Island School of Design

- •2<sup>nd</sup> place at the 2016 competition
- Excellent online documentation
- Approval from RISD team to use their online webpage(s) as resources for our design



Figure 6: RISD Rover 2016



## Collapsibility

**Constraint**: Rover must fit within a 5 x 5 x 5 cube

Solution: Folding Chassis Joint allows rover to fold

- 2 1/4 in. triangular plates
- Hinges welded to bottom
- Material: water jet cut A36 steel
- Welded onto the midsection of the chassis

#### **Folding Chassis Joint Assembly**



Figures 7-8: Chassis Fold



### Current Frame Iteration



Figure 9-10: Current Frame Iteration and welding





## Assembly





Figures 11-12: Current Assembly



#### Rear Drive Train

# Possible Modification: Simplify mechanism by having rear rider pedal backwards instead

Figures 13-15: Rear Drivetrain



## Wheel Design



Figures 16-18: Wheel Design

LUKE MAEDER 10

## Manufacturing progress







Figures 19-21: Machining Progress

KATHERINE ESTRELLA 11

## Purchase parts

This image cannot currently be displayed.

To expedite the build process, the following items will be purchased (and design slightly altered to accommodate) among others if feasible:

- Seats
- Freewheel sprockets
- Wheel Hubs

Figures 22-25: Purchase Parts

## Upcoming and current tasks

#### **Materials on Order**

- Wheels
- Front Drivetrain
- Hinge Assembly
- Tab Assemblies

#### Under design revision for manufacture

Suspension

#### **Design and Modeling Phase**

- Rear Drive Train
- Seating Assembly

#### **Currently manufacturing**

Chassis

KATHERINE ESTRELLA 13

## **Gantt Chart**



| This image cannot currently be displayed. |  |
|-------------------------------------------|--|
|                                           |  |
|                                           |  |
|                                           |  |
|                                           |  |
|                                           |  |
|                                           |  |
|                                           |  |
|                                           |  |
|                                           |  |
|                                           |  |
|                                           |  |

KATHERINE ESTRELLA 14

## Acknowledgements

Thank you to these local businesses for bicycle parts:

- University Cycles
- Great Bicycle Shop
- Joe's Bike Shop

Thank you to the student machine shop for information on designing for manufacturing.

Thank you to SAE for advice on vehicular design.

Thank you to Dr. Shih and Dr. Gupta for design advice and project management.

Sponsorship Provided by the Florida Space Grant Consortium, which we gratefully thank for funding



## References

http://portfolios.risd.edu/gallery/23181693/RISD-DTC-Moon-Buggy-Parts

https://grabcad.com/library

https://www.mcmaster.com/

http://www.onlinemetals.com/