# Design and Development of a Human Powered Vehicle: NASA Rover Competition

Advisors: Dr. Nikhil Gupta

Donors: Great Bicycle Shop, University Cycles

Sponsor: Florida Space Grant Consortium



**TEAM 17** 



# The Competition Basics

### Prototype a vehicle that ...

- Is human-powered
- Accommodates two people
- Has off-road capabilities
- Is 'small' and 'light'
- Is safe
- Wheels must be manufactured

#### **Needs Statement:**

"There needs to be a ground vehicle powered by fit male and female drivers that is capable of competing in the NASA Human Exploration Rover challenge."

#### **Restated Goals Statement:**

"Successfully create a working prototype. Attempt to win the rookie award at competition."

GARRETT RADY

### CHALLENGE OBSTACLES











## Benchmark

- Rhode Island School of Design (RISD)
- •2<sup>nd</sup> place at the 2016 competition
- •Approval from Thomas Brenner from RISD team to use his online webpage(s) as resources for our design.



Figure 6: RISD Rover 2016



# Component Morphology

### **Design of chassis**

- Truss design
- Mid Chassis Hinge Split

### Design of drivetrain

- Chain driven
- All-wheel drive
- Separate drivetrains

### Steering

Hand lever Steering

#### **Brakes**

Single Axle Disc brake

### **Design of wheels**

Spoke Style

### **Design of Suspension**

Double Wishbone Suspension

GARRETT RADY



# Frame Design and Manufacture



- Truss Modifications
- Accuracy in welding dimensions



QUENTIN HARDWICK



# Collapsibility

#### **Folding Chassis Joint Assembly**





Frame Torsion Increased

JACOB VAN DUSEN 7

## Front Drivetrain





Figure 9: Front Drive Train

# Suspension





- Control Arm Jig
- Ride Height Requirement
- Shock adjustability and offset



# Steering Assembly







## Rear Drive Train

# Seating

# Wheel Design

• Spokes: Aluminum 7075

• Rim: 0.125" thick Aluminum 5052

• Hub: Aluminum 6061

Tread: PVC Rough Top

| Dimension                | Value    |
|--------------------------|----------|
| Outer Diameter (OD)      | 26 in.   |
| Axle Diameter (ID)       | 0.75 in. |
| Wheel Width/ Tread Width | 3 in.    |

Table 1: Wheel specs

Figures 16-17: Wheel manufacturing process





# Assembly





Figures 21-22: Current Assembly

KATHERINE ESTRELLA 14

# Testing Phase

Universal Joint Shear Failure

Solution:

Heavier-duty joints with larger transmission angle





KATHERINE ESTRELLA 15

# Competition Results

#### **Critical Failures:**

- Drivetrain roller pins shear
- Spindle tear out

#### Semi-critical Failures

- Fender attachment
- Steering loosening
- Wheel Spokes bending/ tearing





## Future Improvements

#### Steering

- More complex and rigid system
- Analyze dimensions much more carefully
- Modify geometry for tighter turns
- Front Drivetrain
  - Belt Drive
  - Gear for torque
  - Change to drum brake
- Wheels
  - Analyze Rim more closely
  - Tougher and more flexible

- Rear Drivetrain
  - Reinforce Boom further
  - Develop more rigid idler gears
- Seating
  - Consider custom seats
- Suspension
  - Upgrade Shocks
- Frame
  - Construct new rear section for shorter wheelbase
- Overall: tighter tolerances and higher spec components

## Acknowledgements

- Thank you to University Cycles for bicycle parts.
- •Thank you to the student machine shop and SAE for information on designing for manufacturing.
- •Thank you to Dr. Shih and Dr. Gupta for design advice and project management.
- Melissa Van Dyke, Barry Batista, and the host of other NASA engineers who supported us during the competition
- •Sponsorship Provided by the Florida Space Grant Consortium, which we gratefully thank for funding



## References

http://portfolios.risd.edu/gallery/23181693/RISD-DTC-Moon-Buggy-Parts

https://grabcad.com/library

https://www.mcmaster.com/

http://www.onlinemetals.com/